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Abstract - In the past decade transportation systems have been augmented with information and communication technology to provide innovative services to the participants in the traffic. This synergy has resulted in safer and more optimized transportation network. In past few decades, newly developed systems in the area of transportation have been collectively called the Intelligent Transportation Systems (ITS). ITS can be defined as a holistic, control and information and communication upgrade of the classical traffic and transportation system that achieves significantly improved performance, traffic flow, more efficient passenger and goods transport, improved traffic safety, comfort and passenger protection, and reduction of environmental pollution. The interest in ITS comes from problems caused by traffic jams, traffic accidents, environmental concerns, congestions, delays and the synergy of latest information technology for simulation, real-time control and communication networks. Traffic accident management is one of the main focus fields of ITS due to the severe consequence that the accidents have. This paper surveys the traffic accident relation studies in ITS.
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1. Introduction
One of the most important needs of modern society is transportation, both for personal and commercial purposes. Due to this fact, substantial number of engineers and scientists around the world put constant effort on the design and implementation of various technological aids to have more comfortable and efficient transportation systems. In past few decades, newly developed systems in the area of transportation have been collectively called the Intelligent Transportation Systems (ITS). ITS can be defined as a holistic, control and information and communication upgrade of the classical traffic and transportation system that achieves significantly improved performance, traffic flow, more efficient passenger and goods transport, improved traffic safety, comfort and passenger protection, and reduction of environmental pollution. The core of ITS is systematic management and information-communication solutions embedded in network infrastructure, vehicles, control centers and various communication-computer terminals.  
Intelligent transportation systems deliver services and information to users through a distributed information system using an interface that is customized to a user or mobile object. ITS systems are convergent and open, offering, on the one hand, the application of different technologies of interactive and multimedia features, and on the other hand guaranteeing the integrity of action across the geographic area, from micro-locations to cities, regions, states and continents. The basic purpose of implementing an ITS is to enhance the quality of traffic and transportation, improve driver and passenger experience, improve people-to-travel, asset and service sharing, and increase overall traffic information transparency. 
ITS are increasingly being introduced into most of developed countries in order to ultimately facilitate traffic flow and, of course, enhance traffic safety. The development of ITS involves the addition of information and communication technology (ICT) to transport technology and vehicles in an effort to manage factors that are usually in interaction with each other, such as vehicles, load carriers, and routes to improve safety. The interest in ITS comes from problems caused by traffic jams, traffic accidents, environmental concerns, congestions, delays and the synergy of latest information technology for simulation, real-time control and communication networks. Traffic congestion frequency and traffic related accidents are growing in number worldwide as a result of increased motorization, urbanization, population growth and population exchange. These factors reduce the efficiency of transport infrastructure and increase travel time, air pollution and fuel consumption.
ITS integrates many different technologies spanning from basic management systems such as navigation, traffic control equipment, digital traffic signs, license plate recognition, electronic speed cameras, security systems and more advanced applications that integrate live data and feedback from numerous other sources such as parking lots and roadside information systems, weather forecasts, etc. Additionally, predictive techniques are being developed to allow advanced modeling and comparison with historical baseline data. 
For a systematic research approach, it is important to understand the complex interaction between people, vehicles and roads. These interactions are very important for both the safety and traffic management and for design of roads. Misconduct of traffic participants is the most common cause of traffic accidents. The ITS options for improving traffic safety can be implemented through several technological entities, namely infrastructure systems, systems related to the vehicles and cooperative systems. 
The most significant representatives of the infrastructure group are; highway traffic management systems; traffic incident detection; law enforcement systems; advanced cross-traffic management procedures; advanced warning systems; cross-country systems; road weather conditions metering.
Recently, attention is drawn to vehicle systems that significantly improve driving safety. Their fundamental division is on driverless cars and advanced driver assistance systems (ADAS). Some examples of these systems include anti-lock braking systems, active stabilization systems, active vehicle control systems, road lane warning systems, speed control systems, automatic parking system, and rearview mirror enhancement.
The most significant research is done in the area of cooperative vehicle management and its environment (other vehicles, road infrastructure, traffic management centers, cross roads etc.). In this respect, some communication forms are put forward and partially standardized such as V2V - vehicle to vehicle and V2I - vehicle to infrastructure. Effective systems in this area are the following; navigation systems and travel information systems, vehicle fleet management, intelligent speed control systems and commercial vehicle support systems.

Traffic accident management is one of the main focus fields of ITS due to the severe consequence that the accidents have. Accident management is a coordinated set of activities to help participants, remove vehicles, and normalize the traffic flow after the occurrence of a traffic accident or other incident on the road, such as a vehicle failure. The fast-coordinated response of the police and other emergency services (first aid, fire brigades, etc.) are key requirements for traffic accidents or other incident situations on the roads. The accident management system is closely related to other traffic management subsystems in the city or other subsystems.

Rescue Service Accident Management (RSIM) is one of the most demanding ITS implementations in developed countries. After a traffic accident occurs, RSIM is informed about the position of the involved vehicles. Automated tracking and prioritization systems allow the nearest rescue vehicle to reach an accident site by the shortest route. 
Fast and precise accident management activities reduce negative consequences such as waiting, traffic jams, and secondary traffic accidents, etc. The fast arrival of medical help to the place of accident is crucial. Geographic information system (GIS) technology and decision-making expert systems involved in ITS enable accurate detection, rapid response, and better co-ordination of various organizations involved in accident management.
2. Literature survey
Traffic accidents and congestions increase the travel time and make roads less safe and reliable. In this context traffic accidents also have poor economic effect. In the past many researchers analyzed the effect of congestion and accident related jams in specific situations. For example, congestions on US West Coast ports between 2014 and 2015 caused agricultural products to go bad and as a result decrease of GDP 0.2% was registered in Q1 of 2015 [1]. There are also findings indicating that highway congestion leads to slower job growth in metropolitan areas of US [2]. 
Managing flow and accidents in congested traffic situations requires detailed understanding of accident causes, time and location of traffic congestions, effects of congestion on the rest of traffic network, etc. In order to study these conditions traffic flow needs to be understood and decisions based on the traffic flow data need be made[3].
Research and development around the world aim at the prediction of accidents, their preventions and detection of accidents upon their occurrence by focusing on following topics; traffic flow modelling and simulation, design, implementation and simulation of systems for traffic monitoring and the design of data driven expert traffic management systems. The most recent developments in these fields will be presented and analyzed in following subsections.
2.1.  Traffic flow modelling and simulation
Traffic flow is a very well-studied topic in civil engineering. The traffic flow is studied in terms of interactions between vehicles/pedestrians and infrastructure, including highways, signage, and traffic control devices. The main objective of traffic flow studies is the development of schemes and methods for efficient management of traffic movement while minimizing the congestion problems [4]. 
The traffic flow can be modelled by looking at the traffic on the different level of details, namely microscopic, mesoscopic and macroscopic [4,5,6,7]. All three model levels are important to understand when obtaining the full picture of the traffic situation. All three model levels have been used to deal with prediction, detection and prevention of traffic accidents. 
Microscopic models are formed based on the information about vehicle position and speed. The vehicles are treated individually in microscopic models, apart from the other vehicles participating in the traffic. On the other hand, the mesoscopic models consider traffic flow as the bubbles of vehicles and mostly deal with averaged values of the groups of vehicles. The traffic parameters of groups of vehicles are described using probability distribution functions. Finally, macroscopic models represent traffic in terms of density and flow. Macroscopic models are rich in details and take basis in aggregated parameters [4].
At microscopic level of traffic flow, single vehicles are considered as the smallest unit of observation. Each vehicle behavior is considered separately in space and time. Microscopic level models that get hold of longitudinal relations between vehicles have gathered great amount of interest in history [8]. Nevertheless, microscopic models still need to be calibrated and validated to be applicable to the real-world situations. 
With the development of effective and cheap methods to collect data certain studies started emerging that offered contradictory results to the models developed in history [8]. Due to this reason, more recent studies have more reliable results. Renewed efforts of testing of models against real traffic data have resulted in more precise and reliable microscopic traffic flow models [9].
The use of microscopic traffic modelling has become very widespread and simulation environments have been developed to be able to perform complex analysis. With the advent of advanced simulation tools, the research on analysis of traffic flow has taken a different road, mainly focusing on sub models and car-following. 
Microscopic level simulation models face challenges in properly recreating the realistic traffic conditions. These models are difficult to calibrate and evaluate. These difficulties were mostly associated with the difficulty of gathering accurate field data in the past. Recently researchers employed Global Positioning System instruments to monitor vehicle trajectories in real traffic situations [10].
The most common issues with the microscopic traffic flow models are associated with the uncertainty in the measurements of model states. Models often differ from real world data due to the variety of driver behaviors and the errors in measurements of traffic variables, and the model errors [11,12]. It is possible to minimize these uncertainties through tedious calibration of model parameters. 
The calibration is most of the time defined as minimization problem having an objective function in terms of error between the model and real outputs. It requires seeking the values of parameters that minimize a distance between system and model outputs. Researchers proposed an approach, based on which the calibration of microscopic traffic flow models is possible by calibrating all of the parameters in the same time [13]. The studied parameters are, global and local traffic parameters, driver behavior and vehicle performance parameters. Further, authors suggest Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, an algorithm allowing the finding of optimal parameters that minimize the difference between real-world and simulation network states [13]. 
Other issues associated with the calibration process are as follows: 

1) the scarceness, incompleteness, or inconsistency of data as to the model complexity; 

2) the improper setup of the calibration problem and 

3) the asymmetry in the importance of model parameters [14].
Mesoscopic models include a fair amount of details of traffic flow. These models don’t explicitly consider individual vehicles, which results in less detailed models in comparison to microscopic models. Nevertheless, mesoscopic models still contain information about individual vehicles through probability distribution functions. Mesoscopic models are based on the information about the heading and velocity of vehicles. These parameters are described using probability distribution functions (Hoogendoorn, 2001). 
Probability distribution functions of heading consider heading identically distributed among vehicles. Three well-known examples of mesoscopic models are, heading distribution models, cluster models and alternative multilane models [3]. 
Macroscopic models represent traffic flow coarsely, without regard to the individual contribution of vehicles and using only accumulated traffic parameters. The accumulated parameters of traffic flow represent the summed behavior of all traffic participants and often the model is described using the fluid dynamics analogy [6,15]. Macroscopic traffic models are easy to calibrate and require small computational effort. Due to these advantages the large scale traffic networks can be simulated in easy and fast fashion. The traffic variables most often used in macroscopic models are accumulated density, flow and speed [6, 15].
Various methods can be used for macroscopic flow model calibration. The calibration is necessary for models to be able to accurately simulate the real-world traffic conditions. The calibration of model parameters is essentially an optimization problem involving the minimization of error between model and actual parameters. The optimization approach usually used in calibration are meta-heuristic in nature, e.g. direct search meathod. Overview of nonlinear programming methods for the calibration of macroscopic traffic flow models is presented by Konrorinaki et. al. [16]. 
Multiple lane 2nd order macroscopic traffic flow model was developed and numerically discretized by Porfyri et al. The model was established using the real traffic data. The model is based on the information about lane changes, both the random ones and the ones caused by movement of other vehicles. Porfyri et al. also proposed a meta model based Differential Evolution optimization algorithm to calibrate the model in search of global solution [17].
Evolutionary algorithms as well as the swarm intelligence algorithms are often used to perform model calibration as well. Poole et. al. describes and compares 10 different optimization algorithms. The algorithms were compared taking into consideration their convergence to a solution based on the test sets of data. Authors found that particle swarm optimization are particularly successful in terms of convergence and provide the best option with respect to speed and accuracy [18].
2.2.  Traffic monitoring systems, V2I, V2V and VANETs

Intelligent transportation systems are set to ultimately increase the efficiency of the interplay between various parts of the transportation system (e.g. roads, vehicles and drivers) with the help of sensing equipment capable monitoring environment and the number of actuators that realize set of control rules decided in advance. Traffic conditions monitoring is crucial for the overall success of the ITSs, since it gives the sensing capabilities.
Conventional traffic conditions monitoring systems include fixed sensors, mostly inductive loops or cameras, which detect microscopic, mesoscopic and macroscopic traffic state variables. Observed parameters include the flow and speed, the existence of vehicles, density. These parameters are processed, and detection of accidents and short time prediction of traffic conditions is done. Using direct definition, Ni found that different traffic parameters such as speed, flow, density etc., can be identified from the traffic count derived by a fixed inductive loop sensor [19]. In this work, time-stamped traffic counts are collected from one sensor, which must preserve the basic relationship between densities, flow etc. This method is intended for freeway sections where vehicle access is controlled; no vehicle is added or lost in the midblock. 
Loop detectors are also used in the study performed by Ramezani et al. to derive vehicle density using an Expectation Maximization approach. In this work, aggregated speed and flow measurements from the dual-loop detectors for 30 seconds are converted speed and density data [20]. 
Hernandez et al. proposed a method for real-time density estimation using reidentified vehicles and their travel times predicted from a vehicle re-identification (REID) system where vehicles are matched depending on their inductive signatures [21]. While comparing the accuracy of the density estimation algorithm with real world data captured by video camera, less than 4% mean absolute percentage error is found in both congested and non-congested situations. Vehicle re-identification algorithm is also used in previous research where individual vehicle actuations was used to improve density estimates [22].
Another system to collect data for estimating density is video recording [23]. This study was conducted in an environment with heterogeneous traffic which does not maintain any lane-discipline. Authors developed a lumped macroscopic traffic flow model which only data required for field implementation are the spot speeds and vehicle flow. Here authors used Kalman filtering to develop the model-based estimation scheme. Using 2 days of traffic data from Chennai road, this proposed method was corroborated, and the mean absolute percentage error was found to vary from 13-19%, which was considered a good estimation. 
For urban traffic monitoring, a review study by Buch et al. presented a comprehensive overview of using computer vision techniques [24]. According to this study, vehicle counts were often performed by installing cameras at higher poles compared to CCTV, to overcome vehicle occlusion problem.
Another interesting way to estimate traffic density is to use cumulative road acoustics. In their study, Tyagi et al. considered deploying microphones in every street, and using the collected cumulative acoustic signal they classified the vehicular traffic density into jammed, medium-flow and free-flow condition based on the difference between the various spectral content [25]. Authors used a Bayes classifier to classify the acoustic signal segments. Bayes classifier performed well with 95% classification accuracy. Authors also propose a discriminative SVM classifier to even further increase the classification accuracy. 
As the installation and maintenance cost for loop detector system is high, Caceres et al. found that the utilization of existing cellular systems with numerous cellular phones acting as probes has a distinct advantage in capturing traffic volume [26].
To approximate the number of vehicles moving from one cell (i.e. service area which is covered by a set of base stations) to other, authors proposed a set of models. When compared with the detector volume measurements, their experimented results showed that reasonable estimates with the median of the absolute relative error levels around 17%. This shows that the proposed method is not appropriate to the applications sensitive to density. Vlahogianni et al. provide a comprehensive overview of the literature on this field for further study [27].
More modern type of traffic monitoring is realized with the help of Vehicular Ad-Hoc Networks (VANETs) that allow Dedicated Short-Range Communications (DSRC) of vehicles in the 5.9 GHz band, through the IEEE 802.11p standard. VANETs have been built to support both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications applications. 
Implementation of V2V/V2I communications allow for treatment of individual vehicles as probes in the traffic stream and at the same time the communication allows for exchange of information regarding the traffic conditions between vehicles. In recent years, the possibility of direct exchange of kinematic data between vehicles over VANETs has been widely perceived by governments, car manufacturing industries and academia as a promising concept for future realization of ITSs [28].
The VANETs are applied for increase of traffic efficiency and safety. Traffic efficiency applications include traffic flow optimization and lane management. The intelligent traffic systems communication architecture is composed of the subsystems that can cooperate via the use of communication [29]. These subsystems can be vehicles, roadside units (RSUs), personal devices, and traffic management centers. In the overall system the management centers collect and process data in order to control and manage traffic according to predefined aims. [30]. 
Cooperative Collision Warning has been identified as important VANET application. This is a safety application whose main goal is to prevent vehicle collisions on the motorway using vehicle-to-vehicle (V2V) communications. One of the important concepts in CCW is “360 degrees driver situation awareness” [31]. This concept is based on the alert system where vehicles inform the drivers about the nearby dangers and there is no need for employment of costly equipment such as road side units or camera based sensing systems. The “Cooperative Collision Warning” is based on the interchange of short messages between vehicles. The payload of the messages contains the data about the location, velocity and other settings of other nearby vehicles. Based on that data the vehicle control systems can detect the threat and come up with collision preventive set of actions. These actions are issuing of the warning messages to the driver for now, however with further developments in autonomous vehicles the importance and scope of available actions will be expanded. 

Concretely, CCW results in several different applications such as “Forward Collision Warning (FCW)”, “Lane Change Assistance (LCA)”, and “Electronic Emergency Brake Light (EEBL)” [32]. FCW refers to the system where vehicles use messages received from other vehicles to calculate the probability of collision with the vehicle in front of it. On the other hand, LCA does the similar thing but instead of considering vehicles in front of the proto vehicle, it considers the other vehicles in the parallel lanes that are changing lanes in an unsafe manner. Lastly, in EEBL system tries to determine the breaking vehicles in front of the proto vehicle. In this manner system is able to predict possible crash and prevent it by issuing the warning.
Road junctions are important traffic structures that ensure the continuous traffic flow. Stevanovic et. al. proposes the implementation of VANETs for management of road junctions in a efficient manner. In particular, authors propose the implementation of adaptive traffic lights based on the data obtained from VANETs to maximize the flow of traffic at the junctions. [33]. 
In the context of VANET applications, Ferreira et al. propose the change of traffic sign infrastructure and migration of traditional traffic lights into the vehicle instrumentation board. The traffic lights would be implemented as the virtual signs rather than the hardware next to the road. The authors propose that certain vehicles on the road has ability to transmit messages containing the information about the traffic light status. The messages are received by other traffic participating vehicles and displayed on the instrumentation boards. This application would ultimately result in the increase of traffic efficiency [34]. 
The advance of V2V and V2I communications has opened doors to the possibility to collect and share large number of data including the microscopic vehicle parameters. The data collection has in turn enabled the data driven development of systems for traffic monitoring and accident and anomaly detection in traffic [35,36].

Barria et.al. proposes the traffic monitoring procedure that consists of three steps, namely [37];

. Collect traffic data,

. Monitor traffic accidents and anomalies in the context of collected data,

. Act on the data by sending information or warning messages to the traffic participants and traffic management centers.
2.3.  Data driven expert traffic management systems

The complexity of traffic management is very high, and it cannot be done strictly using model based analytic approaches. The ability to collect large amount of traffic data in real time calls for involvement of data driven approaches for traffic management and design of so-called expert systems. Often the design of such systems involves the use artificial intelligence algorithm for detection, clustering, prediction, analysis, simulation and visualization of traffic situations.
Among monitored traffic events most attention has been given to incident and anomaly detection and response to the occurrence of these events (alert). The detection and prevention of traffic incidents is of extreme importance on the highways [38]. 
The development of traffic incident detection system actually involves collection of traffic information from vehicles on the highway, analysis of the collected information (anomaly detection, trend analysis, etc) and dissemination of warning messages based on the obtained results. 
The decision algorithms employed for the incident detection are called the “automatic incident detection (AID)” algorithms. These algorithms analyze the collected traffic data and compare the results to predefined trends. Once the results are not satisfying the predefined trends the traffic alerts are issued. These algorithms can be classified into two groups, namely, the comparative and time based [36]. 
Time series approach deals with the estimation of traffic parameters based on the past observations. The algorithms employed in this approach rely their results on the statistics of the previous behavior of the observed series. Dudek et. al. are among the pioneers of this approach. Authors propose the so called “Standard Normal Deviate (SND)” algorithm [39]. This algorithm uses statistical analysis of time series to determine the standard normal deviate (defined as difference between observed variable and historical mean divided by the standard deviation). An alarm is issued when the standard normal deviate falls outside of the predetermined 17 thresholds. False alarms are eliminated by employing the so called “persistence checks”. The results from test of this algorithm show 92% detection rate with nearly 1.1 min of time to detect and very few false alarms. The critical point of the algorithm lies in properly determining the thresholds. Another example from time series category is a “TRANSCOM System for Managing Incidents and Traffic (TRANSMIT)” [40]. 
Comparative approach is based on the comparison of the parameters calculated from the current measured traffic variables and compared to the pre-determined thresholds. The leading examples of these algorithms are “California Algorithm” [41] and the “McMaster Algorithm” [42]. California Algorithm is based on the information about the occupancy between the neighboring detectors [41]. 
Abuelela et. al. propose the Bayesian based approach together with the V2I communications to enhance the performance of automatic incident detection algorithms [43]. The proposed algorithm is prone to false positive alarms. According to the presented tests, propose algorithm performs well for lane blocking incidents (collision, tree on the road, dead animal, etc.) 
Wang et. al. propose the approach for AID that combines the time series processing and machine learning techniques with reference to fault diagnosis theory [44]. Proposed approach uses the time series processing to predict the normal traffic conditions based on the past information about the normal conditions. Complimentary to time series, the machine learning algorithms has a goal to detect incidents with the help of features related to the real-time traffic and time series component prediction result. The hybrid approach yields satisfactory results when validated on the real-world test data. The hybrid algorithm performs better than other state-of-the-art algorithms [4].
Ma proposed a framework for assessment of highway traffic conditions. Framework is based on the kinetic information of traffic participant vehicles. Data is collected using V2I communication where the vehicles and road-side units communicate. The framework allows the use of artificial intelligence for decision making on occurrence of incidents. Two AI techniques have been implemented, namely; 

1) support vector machines (SVMs) and 

2) artificial neural networks (ANNs). 
In the same study, Ma performs a case study based on the microscopic traffic simulation environment for a highway network. The performance of proposed approach performs better than California algorithm in terms of higher detection rate, lower false alarm rate, and increased detection times. The approach was able to generate information about the estimation of the incident location and estimation of how many lanes will be blocked. These additional data are particularly helpful for the designation of appropriate response to the incident [45]. 
SVMs became popular option for implementation of AID algorithms. Yuan et. al. propose the classifier to be used in the incident detection based on the support vector machines. The SVM are implemented as the algorithm that identifies the data vectors that lie close to the class boundary and constructs the classifier based on the identified vectors. In the study, Yuan et. al. propose 2 SVMs, with different kernel functions.  Both SVMs were tested and validated on data previously obtained from aerial network (satellite images). As it appears, the SVM perform better than previously employed neural networks and have better detection rate, lower false alarm rate and faster detection time [46]. 
Same authors in a separate study explore the performance of 3 different SVMs. The performance of the SVMs was tested on the real highway data. The SVMs are again shown to perform better than the artificial neural networks. Authors concluded that the SVMs are very promising approach for the development of automatic incident detection algorithms [46]. 
The performance of SVM is highly dependent on the selection of kernel function. In order to make the SVM performance less dependent on the kernel selection multiple kernel SVM can be employed. This is so-called “ensemble” algorithm that can generate better result than any of its constituting methods. 
Xiao et. al. propose the multiple kernel support vector machine (MKL-SVM) for automatic incident detection. The algorithm is based on the technique called the “resampling” to produce training and test sets. Upon the generation of the training tests, different training sets are used to train the individual SVMs with different kernels. Finally, the results of the individual SVMs are ensembled to construct the MKL-SVM and ultimately detect the traffic incident. The extensive experiments are performed by authors to verify the performance. The comparison is done between standard SVM, SVM ensemble, MKL-SVM, and proposed MKL-SVM ensemble. The results point that proposed algorithm has be best performance in traffic incident detection. Improved results are achieved while the complexity is reduced when compared to other SVM based algorithms. The proposed algorithm also simplifies the algorithm development procedure by eliminating the need to determine and select the “appropriate” kernel function and underlying tuning parameters [47]. 
SVM is particularly utilized algorithm for real time automatic incident detection due to its implicit ability to come up with highly nonlinear classifier that can be computed efficiently in short time while providing the desired generality. The SVM is also well known for elimination of bias in data by inclusion of unrelated parameters to the prediction variable [48]. 
3. Conclusion
Intelligent transportation systems are increasingly being introduced to facilitate traffic flow and, of course, enhance traffic safety. The development of ITS involves the addition of information and communication technology (ICT) to transport technology and vehicles to manage factors that are usually in interaction with each other, such as vehicles, load carriers, and routes to improve safety. The interest in ITS comes from problems caused by traffic jams, traffic accidents, environmental concerns, congestions, delays and the synergy of latest information technology for simulation, real-time control and communication networks. Traffic congestion frequency and traffic related accidents are growing in number worldwide because of increased motorization, urbanization, population growth and population exchange. These factors reduce the efficiency of transport infrastructure and increase travel time, air pollution and fuel consumption.
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