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Abstract: The faster that a motor vehicle can accelerate to a high velocity is crucial to 
its performance and handling. The acceleration of the vehicle is important to know 
because it tells us how the car handles during merging and evasive maneuvering. 
Decision trees are powerful and popular tools for classification and prediction. The 
attractiveness of decision trees is due to the fact that, in contrast to neural networks, 
decision trees represent rules. Rules can readily be expressed so that humans can 
understand them after a brief explanation. Therefore, the objective of this paper is to 
develop a systematic method using decision trees of machine learning to evaluate 
acceleration behavior of motor vehicles based on the forces acting on the vehicle, i.e. 
vehicle dynamics.  
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Introduction 
 

A vehicle can go faster if it has more horsepower. In reality, there are many aspects to a vehicle 
acceleration besides it's horsepower. One other maj or aspect is vehicle weight. If the vehicle weight is lowered, 
its acceleration, braking, and handling capabilites  will be increased. Given the same power and adequa te traction, 
a light vehicle will accelerate quicker than a heav ier vehicle. Figure 1 shows such an acceleration pe rformance, 
specifically 0-60 mph (=26.66 m/s) passing time, fo r various vehicle weights from 1100 kg to 1700 kg w ith all 
other parameters unchanged on a simple vehicle dyna mics model realized on Matlab-Simulink (Matlab, 200 8). A 
very quick street or race car usually combines exce llent power with less weight. 

The most current vehicle dynamics controllers attem pt to ensure stability by keeping lateral accelerat ion, 
sometimes, longitudinal acceleration, and yaw withi n reasonable bounds (Bauer, 1999a; 1999b; Jurgen, 1 999; 
Karri and Butler, 2002). The faster that a vehicle can accelerate to a high velocity is crucial to its  performance 
and handling. The acceleration of a vehicle is impo rtant to know because it tells us how the vehicle p erforms 
during merging and evasive maneuvering. The launchi ng performances are the acceleration performance  with 
various throttle positions and the transient charac teristics of vehicle  creep and throttle tip-in. Every time a new or 
redesigned performance car enters the marketplace, it is accompanied by a number; specifically, the nu mber of 
seconds it takes to reach 60 miles per hour (26.66 meters per second) from a standing start. So many d rivers 
want to push that pedal all the way to the metal, a s much of the time as possible; because they do not  want to 
have trouble merging into an expressway or take end less seconds to pass another vehicle on a two-lane road. 
Weak acceleration is an issue that needs to be addr essed when minicars, including those powered by bat teries, 
begin to emerge into the world market. What matters  is not the ability to reach 60 miles per hour in a  few 
seconds. All that counts is the ability to accelera te at midrange speeds: from 30 to 50 mph, or 50 to 70 mph. That 
is where energetic acceleration has a valid purpose , and is essential for safe motoring. Charts displa y 
acceleration times not only from 0 to 60 mph, but f or a selection of useful speed ranges. Road tests i nclude a 
broad set of timed acceleration runs. 

Excess acceleration and deceleration need to be det ected and mitigated within the required response ti me 
particularly in the case of hybrid electric vehicle s (HEVs). There are a variety of simulation program s developed 
to investigate  the launching performance in various launching cond itions through the use of mathematical models 
of each driveline component (Kim, 2005). Automotive  manufacturers use such performance programs to 
evaluate their vehicles during product design and d evelopment stages so that they can meet the stringe nt 
govermental regulations on performance, fuel econom y, and emissions before the vehicle is actually lau nched to 
the marketplace. Practical evaluation of accelerati on behavior through the rulistic expression of deci sion trees 
helps to expose the major factors that affect the p erformance-related design parameters so that the re design can 
be made more productively and  effectively in order  to prevent vehicle recalls and/or customer dissati sfaction. 
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Figure 1. Acceleration performance for various vehi cle weights. 

 
This paper is based on decision tree learning  used  to evaluate vehicle dynamic parameters for describ ing 

an accelerating vehicle behavior.  
The remaining of the paper is arranged as follows. Section 2 briefly explains the basics of the decisi on 

tree learning including the definition, the constru ction, attributes as classifiers, entropy and infor mation gain. 
Section 3 describes the method. Section 4 presents the numerical experiments and simulations. Finally,  
conclusions are drawn in Section 5. 
 
 
Decision Tree Learning 
 

Decision trees are powerful and popular tools for c lassification and prediction. One of the several 
advantages of decision trees is that they are simpl e to understand and interpret. This is mainly due t o the fact 
that, in contrast to neural networks, decision tree s represent rules. These rules can readily be expre ssed so that 
people can understand them after a brief explanatio n (Gamberger and Smuc, 2001). Decision tree learnin g, used 
in data mining and machine learning, uses a decisio n tree as a predictive model which maps observation s about 
an item to conclusions about the item's target valu e.  More descriptive names for such tree models are 
classification tree (discrete outcome) or regressio n tree (continuous outcome). In these tree structur es, leaves  
represent classifications and branches represent co njunctions of features that lead to those classific ations 
(Breiman et al., 1984; Yuan and Shaw, 1995; Mitchel l, 1997; Berikov and Litvinenko, 2003; Menzies and Hu, 
2003, Wikipedia, 2009). 

Decision tree is a classifier in the form of a tree  structure, where each node is either (Gamberger an d 
Smuc, 2001):  

• a leaf node - indicates the value of the target att ribute (class) of examples, or  
• a decision node - specifies some test to be carried  out on a single attribute-value, with one 

branch and sub-tree for each possible outcome of th e test . 
A decision tree can be used to classify an example by starting at the root of the tree and moving thro ugh it 

until a leaf node, which provides the classificatio n of the instance. Most algorithms that have been d eveloped for 
learning decision trees are variations on a core al gorithm that employs a top-down, greedy search thro ugh the 
space of possible decision trees. Decision tree pro grams construct a decision tree from a set of train ing cases 
(Gamberger and Smuc, 2001). 

The estimation criterion in the decision tree algor ithm is the selection of an attribute to test at ea ch 
decision node in the tree. The goal is to select th e attribute that is most useful for classifying exa mples. A good 
quantitative measure of the worth of an attribute i s a statistical property called information gain th at measures 
how well a given attribute separates the training e xamples according to their target classification. T his measure is 
used to select among the candidate attributes at ea ch step while growing the tree. In order to define information 
gain precisely, we need to define a measure commonl y used in information theory, called entropy, that 
characterizes the (im)purity of an arbitrary collec tion of examples. Given a set S, containing only po sitive and 
negative examples of some target concept (a 2 class  problem), the entropy of set S relative to this si mple, binary 
classification is defined as: 

      n2np2p plogpplogp)s(Entropy −−= ,      (1) 

where p p is the proportion of positive examples in S and p n is the proportion of negative examples in S 
(Mitchell 1997; Gamberger and Smuc, 2001).  

One interpretation of entropy from information theo ry is that it specifies the minimum number of bits of 
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information needed to encode the classification of an arbitrary member of S (i.e., a member of S drawn  at 
random with uniform probability). For example, if p p is 1, the receiver knows the drawn example will be  
positive, so no message need be sent, and the entro py is 0. On the other hand, if p p is 0.5, one bit is required to 
indicate whether the drawn example is positive or n egative. If p p is 0.8, then a collection of messages can be 
encoded using on average less than 1 bit per messag e by assigning shorter codes to collections of posi tive 
examples and longer codes to less likely negative e xamples (Mitchell 1997; Gamberger and Smuc, 2001).  

If the target attribute takes on c different values  rather than the special case discussed above where  the 
target classification takes on 2 different values, i.e., binary, then the entropy of S relative to thi s c-wise 
classification is defined as  

              ∑−=
=

c

i
ii plogp)S(Entropy

1
2 ,                (2) 

where p i is the proportion of S belonging to class i. Note the logarithm is still base 2 because entropy is a 
measure of the expected encoding length measured in  bits. Note also that if the target attribute can t ake on c 
possible values, the maximum possible entropy is lo g2c (Mitchell 1997; Gamberger and Smuc, 2001).  

Given entropy as a measure of the impurity in a col lection of training examples, we can now define a 
measure of the effectiveness of an attribute in cla ssifying the training data. The measure we will use , called 
information gain, is simply the expected reduction in entropy caused by partitioning the examples acco rding to 
this attribute. More precisely, the information gai n, Gain (S, A) of an attribute A, relative to a col lection of 
examples S, is defined as  

∑−=
∈ )A(Valuev

v
v )S(Entropy

S

S
)S(Entropy)A,S(Gain            (3) 

where Values(A) is the set of all possible values f or attribute A, and S v is the subset of S for which attribute 
A has value v (i.e., S v = {s  S | A(s) = v}). Note the first term in the equatio n for Gain is just the entropy of the 
original collection S and the second term is the ex pected value of the entropy after S is partitioned using attribute 
A. Gain (S,A) is therefore the expected reduction i n entropy caused by knowing the value of attribute A. Put 
another way, Gain(S,A) is the information provided about the target attribute value, given the value o f some 
other attribute A. The value of Gain(S,A) is the nu mber of bits saved when encoding the target value o f an 
arbitrary member of S, by knowing the value of attr ibute A (Mitchell 1997; Gamberger and Smuc, 2001).  

The process of selecting a new attribute and partit ioning the training examples is now repeated for ea ch 
non-terminal descendant node, this time using only the training examples associated with that node. At tributes 
that have been incorporated higher in the tree are excluded, so that any given attribute can appear at  most once 
along any path through the tree. This process conti nues for each new leaf node until either of two con ditions is 
met:  

1.  every attribute has already been included along thi s path through the tree, or  
2.  the training examples associated with this leaf nod e all have the same target attribute value 

(i.e., their entropy is zero).  
Practical issues in learning decision trees include  determining how deeply to grow the decision tree, 

handling continuous attributes, choosing an appropr iate attribute selection measure, handling training  data with 
missing attribute values, handing attributes with d iffering costs, and improving computational efficie ncy.  
Overfitting is a significant practical difficulty f or decision tree learning and many other learning m ethods. There 
are several approaches to avoiding overfitting in d ecision tree learning (Schaffer, 1991; Mitchell 199 7; 
Gamberger and Smuc, 2001).  

 
 

Method and Data  
 

Vehicle dynamics describes the forces acting on the  vehicle that result in its motion. Tractive effort  and 
resistance are the two primary opposing forces that  determine the performance characteristics of road vehicles. 
The engine in the vehicle supplies the tractive-eff ort force, and the magnitude of this force is restr icted by 
internal friction losses. The difference between th e tractive effort and the resulting resisting force  is the net thrust 
Fnet available for accelerating vehicle. The forces of a ir resistance, rolling resistance, grade resistance , and 
friction resistance oppose the engine tractive forc e and limit the acceleration capability of the vehi cle (Wong, 
1978; Snare, 2002). 

Maximum tractive force, F total, is the maximum amount of force that the engine ca n supply to the tires of 
the drive axles. Therefore, the maximum tractive fo rce delivered to the tires of the drive axles in th e chosen gear 
combination can be expressed as follows: 

             sxnrrmtotal T/)Gr.R.R.T.T(F = ,         (4) 

where T m represents maximum torque (Nm), T r transfer case or auxiliary gear box ratio, R r  final drive ratio, 
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Rn drive axles efficiency (%), Gr 1 gear ratio for the first gear (i.e., x=1), and T s tire size (radius) (m). 
Required pull force, F req, is the force required to cause the vehicle to rol l. Hence, the required pull force is 

calculated by the following equation: 
slopeblimCAcceleratefrictionovercomeFreq ++= or,                                                                          (5) 

)slsin(.Wa).g/W()slcos(.W.F gggRreq ++µ= , 

where Rµ  represents coefficient of rolling friction, W g gross vehicle weight (mTon), g gravitation 

)s/m( 2 , and sl maximum slope in route (degree). 

In this paper acceleration behavior is evaluated ba sed on the 37500 data, which are formed by the 
combination of the maximum torque, weight, gear rat io, final drive ratio, maximum slope and tire size variables. 
These variables, also known as attributes, are expr essed in the form of one-dimensional arrays. The sa me number 
of elements of each attribute array represents a dy namic parameters of a unique vehicle. Therefore the  number of 
different vehicle types in the evaluation process i s determined by the size of the arrays, all in equa l length. Drive 
axles efficiency is taken constant that is set at 9 0%. The efficiency slightly reduces due to internal  friction 
although the absolute traction between tires and ro ad surface increases.  Coefficient of rolling frict ion is also 
considered constant, and is set at 0.03 valid for m ost ordinary car tires on asphalt pavements. The ot her constant 
parameter is transfer case. Transfer case or auxili ary gear is intended to select two wheel drive or f our wheel 
drive operations and may contain one or more sets o f low range gears. Low range gears slow down the ve hicle 
and increase the torque available at the axles. The refore, they are used during slow speed or extreme off road 
maneuvers. Although on all drive sports cars this f eature is absent, we still consider the equations t hat include 
the transfer case ratio, but we decide to set the r atio 1:1 for all the vehicle types considered. Howe ver, transfer 
case ratio has had no effect on our conclusions whe n we set it  at 2:1 for the purpose to exhibit and observe its 
role in describing the complete acceleration behavi or.  It is assumed that the first gear is engaged a s the lowest 
gear and used as such in the entire calculations. T he limits of acceleration variable for the evaluati ons have been 
determined through acceleration vs speed charts (Sn are, 2002). The speed calculations have not taken i nto 
account any environmental forces such as wind or st ate  (and incline) of the road. 
 
 

Numerical Experiments and Simulations 
 

In this study there are seven determined attributes  used to evaluate the vehicle acceleration behavior . 
These attributes are maximum acceleration,  weight,  torque, gear ratio, final drive ratio, tire size, and slope. The 
attributes are used to calculate the leaf and decis ion nodes, and the branches in the tree are formed by the 
attribute values, which are simply one-dimensional array elements. Each element holds a unique branch value. 
For each and every acceleration value in the accele ration array, the difference between  the total tractive force 
and the required pull force is checked whether the resulting difference between the forces is sufficie nt enough to 
accelerate the vehicle when needed on the road.  If  the difference is positive, the further analysis i s done to 
determine the effects of the variables mentioned pr eviously and hence evaluate acceleration behavior ( usually for 
maximum acceleration) as the acceleration is varied  between its predetermined minimum and maximum limi ts. 
Therefore, the objective of this paper is to develo p a systematic method using decision trees of machi ne learning 
to evaluate acceleration behavior of personal motor  vehicles based on the forces acting on the vehicle , i.e. 
vehicle dynamics.  

In this study we use the ID3 algorithm (Quinlan, 19 86) to learn the decision tree by constructing them  
topdown, beginning with the root node of the tree. The best variable (attribute) has been selected and  used as the 
test at the root node of the tree. A descendant of the root node is then created for each possible val ue of this 
attribute, and the training examples are sorted to the appropriate descendant node. The entire process  is then 
repeated using the training examples associated wit h each descendant node to select the best attribute  to test at 
that point in the tree (greedy search policy) (Mitc hell, 1997). We must note that the gain can be nega tive. A 
negative gain indicates that the cost of using the statistical information is more than the cost of de termining the 
path at each node (Rontogiannis and Dimopoulos, 199 5). The decision tree in Figure 2 shows the entire tree to 
classify by sorting the problem through the tree to  the appropriate leaf node, then turning classifica tion 
associated with this leaf (in this case Yes or No).  Figure 3 shows the 30% post pruned decision tree ( Mitchell, 
1997; Esposito, Malerba, and Semeraro, 1997). Both figure sets the depth of the tree to three to view the tree 
better since the branch numbers get intermingled as  the depth is increased. Yes in the tree indicates the value of 
the target attribute (class) of examples, which, al so means that the difference between  the total tractive force and 
the required pull force is sufficient enough to acc elerate the vehicle when needed on the road, and th e magnitude 
of this difference will always be positive. No indi cates that no such force for a given acceleration c an be 
produced by the engine and therefore vehicle cannot  accelerate for a given conditions, and the magnitu de of this 
difference will always be zero or negative. 
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The leaf and decision nodes receive their values, w hich, in this case, are shown in numbers by the 

program, according to the variable organization seq uence during the software loop execution and repres ent 
attributes. Therefore, ‘1’ represents maximum accel eration, ‘2’ maximum slope, ‘3’ gross vehicle weigh t, ‘4’ 
maximum torque, ‘5’ gear ratio, ‘6’ final drive rat io, and finally ‘7’ tire size.  The numbered branch es indicate 
the values in the attribute array in the order from  left to the right that the specific branches belon g to as shown in 
Table 1.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Table 1. Branch numbers and their values for the selected attributes. 
 
 

Conclusions 
 

In this paper the most effective parameters or vari ables for describing an accelerating vehicle behavi or 
have been assessed by using decision tree learning.  Having analyzed the 37500 data by the fully comple te and 
post pruned decision tree, we conclude that the max imum torque that the engine can produce is the main  
significant factor in determining an accelerating v ehicle behavior and always ends up at the root node  of the tree 
regardless of the several trials with different ini tial parameters. Moving down the tree branch, the m aximum 
acceleration comes up as the second significant var iable to describe an accelerating vehicle behavior.  In the third 
subtree level, the vehicle weight, and in the fourt h, the final drive ratio seem to emerge other most significant 
ones. Lastly, gear ratio, tire size, and maximum sl ope in route are the least significant ones, depend ing on their 
defined ranges, as compared to others. These conclu sions have been obtained after many runs with diffe rent  
initial set-ups for  mainly train size, test size, and prune size parameters of the decision tree algo rithm. Of the 
37500 data, 50% to 80% has been chosen as train siz e, 3% to 10% as test size, and 30% to 50% as prune size in 
different occasions to come to the above conclusion .  

For a vehicle to be really quick, these conclusions  suggest that it is important to pay attention to v ariables 
like torque, horsepower, desired maximum accelerati on, gear ratios, transmission selection, traction, weight. 
Specifically, maximum performance in longitudinal a cceleration of a motor vehicle may be determined by  tire 
traction limit at low speeds other than engine powe r which may be accounted at high speeds (Gillespie,  1992). 
All of these factors work in harmony with each othe r to create a signature acceleration rate. Once the  major 
components are in place, the next thing would be to  tune the combination to create an optimum accelera tion.  

 
 

 1 2 3 4 5 

Accel 
(m/s^2) 

0.5 1.0 1.5 2.0  

W 
(mTon) 

1.0728 1.696 1.999 1.379 1.192 

sl (deg) arctan(0.0
1) 

arctan(0.03
) 

atctan(0.0
5) 

  

Tm 
(Nm) 

145.1 332.2 375.6 244.1 173.6 

Gr1 3.615 4.484 3.06 3.50 3.143 

Rr 4.056 3.16 3.42 3.812 4.765 

Ts (m) 0.2997 0.34544 0.3746 0.3327 0.317
5 
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Figure 2. The decison tree output for an  accelerat ing vehicle.  
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Figure 3. The output of the 30% pruned decison tree  for an accelerating vehicle. 

 
 


