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Abstract 

 

In this paper we present the mathematical model for the interest rate (either real or 

nominal) as an autoregressive discrete time and discrete state space process. Having 

defined an interest rate model with discrete time/state spaces, we derive zero-

coupon prices for bonds with any duration and any initial value of the interest rate. 

The process is an approximation of Vasicek continuous time/state space 

autoregressive process presented in Vasicek (1977). We choose Vasicek model for 

interest rate for developing bond prices as the one which is used in the analysis of 

optimal asset allocation problems by many authors. It is a type of one factor short 

rate model where interest rate movements are driven by one source of market risk. 

Our model can be used in many applications when modeling an interest rate or bond 

prices mathematically. It is particularly suitable for making simulations on the 

computer. The shortcoming of Vasicek model is the positive probability of the 

negative value of interest rate. Due to mean reverting characteristic of the interest 

rate, even for the negative value of interest rate, there will be a certain demand for 

both traditional and index–linked bonds. It is possible to derive the bond market 

model using the interest rate which does not allow the negative values of the 

interest rate, for example Cox–Ingersoll–Ross model (Cox et al (1985)). Although 

CIR model may be deemed as a more appropriate, it would be also computationally 

more demanding. In our model we assume that the discrete time interval is one 

year. We will show the technique to transform the continuous time Vasicek process 

into a discrete time one. As the Vasicek process is transformed into discrete time 

process, it is still a continuous state space process. We use the technique from 

Tauchen and Hussey (1991) and as a result get a process with discrete time/state 

spaces. Once we obtain a discrete time/state process for interest rate we can model 

bond prices as the expected present value of future incomes from the bond. We 

model a zero coupon bond. Thus, the bond price is expected present value of one 

money unit that will be due in n years, where n years is the bond duration. 

Following the Vasicek approach, we can also introduce a market price of risk. As a 

final result we get the model for the zero-coupon bond prices for the whole bond 

market (different durations) and for different states of economy (different known 

values of the interest rate). 

 

Keywords: interest rate; Vasicek model, AR(1) process; approximation; computer 

modeling; discrete time/state spaces, bond market model 

 

 

Introduction 

 

In different financial models, one needs to decide if the assumption of constant inflation or 

constant interest rate is an acceptable approximation. Namely, under this assumption the 

model does not recognize the risk of inflation or interest rate risk. Adding these risks in the 

model give us the new insight into the importance of these risks. 
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The usual assumption for the interest rate (or inflation) in the model is one of the 

following: constant, identically independently distributed (iid) random variables for each 

time period, discrete time stochastic process and continuous time stochastic process. 

 

Often, continuous time models better represent the real world. The advantage of a discrete 

time model over continuous time one is the possibility to solve the problem on computers, 

and sometimes to obtain the results numerically while the analytical solution is not 

available with a current mathematical knowledge. In recent years we have witnessed the 

fast development of computer hardware and software, and of parallel computing. So, when 

we develop a discrete time model there are very powerful tools for obtaining a numerical 

solution. Even more, if we want to improve the model, for example to add certain 

constraints or to add annuities or one or more variables, the improved version of the model 

still can be solvable. A shortcoming of the numerical solution on the computer is that we 

usually get one numerical solution for one choice of the values for each parameter. In order 

to get an idea about the solution for different values of the parameters, we need to get a 

number of solutions and to compare them numerically. 

 

We model the interest rate as an autoregressive discrete time and discrete state space 

process. The process is an approximation of Vasicek continuous time/state space 

autoregressive process presented in Vasicek (1977). As the Vasicek model provides bond 

prices for an implied bond market, we can compare bond prices on the bond market 

obtained in our model with the one obtained from Vasicek model. 

 

Wilkie (1986, 1995) develops a discrete time and state spaces stochastic inflation model 

similar to our model presented here. Our approach is to start from Vasicek model and 

develop formulae directly from Vasicek model. For example, our approach can be applied 

to making discrete time and state spaces approximation of the bond market developed by 

Boulier et al (2001), and similar reasoning could be applied to the work of Deelstra et al 

(2000). 

 

In our model we assume that the discrete time interval is one year. We assume that interest 

rate can take finite number of values in a reasonable range. Firstly, the Vasicek process is 

transformed into discrete time and a continuous state space process. Then, we use the 

technique from Tauchen and Hussey (1991) and as a result we get a process with discrete 

time/state space. 

 

In Section 2, we present assumptions and the main parts of the Vasicek model. In Section 

3, we start from the formulae provided in Vasicek model and derive formulae for discrete 

model of interest rate. Once we obtain a discrete time/state process for real interest rate we 

can model bond prices as the expected present value of future income. As we assume a 

zero coupon bond, it means that the bond price is expected present value of one money unit 

that will be due in n years, where n years is the bond duration. Following the Vasicek 

approach, we can also introduce a market price of risk. In Section 4, as a final result we get 

the approximation of the bond market. The model for the bond market is based on the 

discrete time/state space interest rate and can be used for computer simulation of the bond 

market that is consistent with the interest rate. 
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The Main Formulae of the Vasicek Model 

 

The Vasicek model is used for modeling interest rate where time and state spaces are 

continuous. It is a continuous time AR (1) process given by 

 

 ˆ ˆ
ˆ ˆ( ) ( )t t r rdr a br dt dW t     (1) 

 

where 
0̂r  is the initial value of the interest rate, a , b  and 

r̂  are non–negative constants 

and ˆ ( )rW t  is Brownian motion. We use notation 
t̂r  for interest rate from Vasicek model in 

order to avoid the confusion with interest rate afterwards in this paper. As throughout the 

whole paper, the sign   above variable denotes it is a random variable.  

 

We know that 
t̂r
  is a normally distributed random variable and that the conditional 

expectation and variance of the process given current level 
0̂r  are 
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for 0T  . 

 

The stochastic differential equation of the bond investments is given by 
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where t  is the time such that 0 t T  , T  is bond duration, 1),( TTB , and 
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r̂  is referred to as bond's market price of risk and is constant. The function ˆ( , )B tT t r  is 

given by 
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   (5) 

 

for 0T t  .  

 

If we work with zero–coupon bonds and assume that we are interested in the value at time 

0t   of the bonds maturing at time T  and assuming current value of the interest rate is 
0̂r , 

then the price of the zero–coupon bond is given by 
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Discrete Time/State Space Approximation of the Vasicek Model 

 

In order to approximate Vasicek model in discrete time and continuous state space we 

observe the process 

 

 ( ) ( )t d d t dR RR a b R t t        (7) 

 

where ( ) (0,1)R t N   are independent random variables with normal distribution, for 

t . In order to have similar results from the continuous time and discrete time process 

we fit the parameters 
da , 

db  and 
dR  into the Vasicek model (1). 

 

Let us derive formula for 
TR  using equation (7). We have 
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Continuing the similar reasoning gives us the relation 
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Knowing that the sum of normally distributed random variables is again normally 

distributed random variable we have that 
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Now, we can easily derive 
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Let us determine the coefficients 
da , 

db  and 
dR  such that equations (2) and (9), and (3) 

and (10) respectively, gives the same values. From the first two equations, by equating the 

expectations, we have that 

 

 1 b

db e   (11) 

and 

 
1 b

d

e
a a

b


  (12) 

 

Now, from the second pair of equations, by equating variances, we get 
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ˆ
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2

b
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e
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  (13) 

 

The discrete time version of the Vasicek process given in (7) is now fully defined and the 

appropriate parameter values are given in (11)–(13). We have the discrete time and 

continuous state AR (1) process such that tR  is normally distributed and the conditional 

expectation and variation of this random variable is the same as the conditional expectation 

and variance for the Vasicek process given in(1). Thus, we have defined the discrete time 

and continuous state space approximation of the Vasicek process(1). 

 

Tauchen and Hussey (1991) gives the technique for approximating discrete time and 

continuous state space AR (1) process with a discrete time and state spaces process. We 

apply this technique to the process(7). 

 

In order to deploy the technique from Tauchen and Hussey (1991), we need to choose the 

density function ( )y , and the number N  denoting the number of Quadrature points. Let 

the density function ( )y  be the density function of the random variable with the 

distribution 

 

 ,d
dR

d

a
N

b


 
 
 

. (14) 

 

This choice is based on the proposal in Tauchen and Hussey (1991), where the authors say 

that this choice works well in most examples. 

 

Let us denote with 
tr  random variable which has discrete time and state spaces and which 

approximate random variable tR . It is autoregressive process defined in the form 

 

 1 1; ;|t t k t t jP r r r r 
      (15) 
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for 1 ,j k N  . The constants ;t ir  for 1 i N   are the possible states of the interest rate to 

be defined below. 

 

Let the number of Quadrature points be N . The bigger the number of points the better is 

approximation. However, the choice of 15N   provides quite good behavior and we show 

the results with the choice of 15 Quadrature points in Appendix. 

 

Based on this choice we choose abscissa points, i.e. the possible states of the interest rate 

are constants ;1tr , ;2tr , …, ;t Nr , such that the probabilities derived using this technique 

satisfies the condition 1 1; ;1| 0.02t t i t tP r r r r 
       and 1 1; ;| 0.02t t i t t NP r r r r 

       for 

1 i N   and that the points are derived from Gauss Quadrature with these ending points. 

We derive the weights 
1w , …, 

Nw , for these choice of abscissa points and the density 

function ( )y . 

 

Let us also define the function  0|f y r  as the density function for the random variable 

with the distribution 

 

  0 1 ,d d
d dr

d d

a a
N r b

b b


  
     
  

 (16) 

 

Having determined the abscissa points, the weighting function and the function  0|f y r , 

we can apply the Tauchen and Hussey (1991) technique as follows. Let 
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and let 
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  (18) 

 

Then according to Tauchen and Hussey (1991), we have 

 

    
( , ) ( , )

1 1; ;( , ) (1,1)( , ) (1,1)
|

N N N N
N

jk jk t t k t t jj kj k
p P r r r r  

        (19) 

 

 

Numerical Derivation of the Bond prices 

 

In Section 3, we defined the discrete time/state spaces autoregressive process which 

approximates the Vasicek model. Now, we derive the zero–coupon bond prices from this 

process and get the model for the bond market. 

 

We first derive the price of the zero–coupon bond with no market price of risk. As usual, it 

is defined as expected present value of one unit payout after time T . Thus, we have 
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   1 2
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 (20) 

 

where 
1r  is a random variable denoting random interest during the first year, 

2r  is a 

random variable denoting random interest during the second year knowing 
1r , and so on. In 

order to allow for the existence of the market price of risk, we use the idea from equation 

(6) and introduce the market price of risk by multiplying the bond price with no market 

price of risk (equation (20)) with the similar factor as in the continuous time Vasicek 

model. Let the constant 
r  represents the market price of risk in the Vasicek bond market 

model. Then we get the equation for the price of a zero–coupon bond as follows 

 

  
 

1 2
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Let us explain how we can calculate numerically the bond price in discrete time/state 

spaces. Following the main formula for the expected value we have that 
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For the bond of the duration two years we have 
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The same pattern is applied for longer durations. However, we can see that the part of the 

second sum is the same as the sum for the bond with one year duration. Apart from the 

coefficient for the market price of risk the difference is in the indices only. Using this 

observation, one can firstly calculate the prices of bonds with the duration of 1 year and for 

all possible states for 
0r  and then use these results to obtain the results for the bond with 

duration of two years. This feature is important when the calculation is applied on the 

computer. If we define 
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Then one can write 
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Similarly, if we define 
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Following this pattern, we get an inductive formula for bond prices which significantly 

reduces computing time.  

 

However, we calculate bond prices  0 0;, jB T r r , for 
max0 T T   and 1 j N   only 

once and then use the results in the simulations. So, it is important to calculate it in 

reasonable time only once. 

 

Future Research 

 

We can use the model and its solution for the investigation of the influence of random 

inflation or random interest rate in different models. We can also use the results for the 

models where we need bond prices consistent with a stochastic interest rate. The results are 

particularly useful for making stochastic simulations on the computer. 

 

We model the interest rate using AR(1) Vasicek model. Another model for the interest rate 

can be used for developing the values of the interest rate in discrete time/statespace 

environment. The similar technique could be applied to other models as well. 

 

Appendix 

 

In Appendix, we firstly derive the formula for the exact value of bond prices in discrete 

time and continuous state space. Then, we compare bond prices derived from the Vasicek 

model (continuous time/state spaces) with bond prices derive, from the first approximation 

of the Vasicek model (discrete time and continuous state spaces) and from the second 

approximation of the Vasicek model (discrete time/state spaces). This Appendix is 

intended to give the idea of the changes in bond prices due to the approximation. We will 

not try to evaluate the quality of approximation by any criteria, just to give comparable 

bond prices values. 

 

Equation (20) for the discrete time and continuous state spaces AR(1) process (7) can be 

solved exactly. Having solved equation (20), we multiply it by the factor  

 

 

1 T b
r r e

T
b b

e

   
   

   (23) 

 

for T   and get the exact bond prices in the first approximation of the Vasicek model, 

where we have discrete time and continuous state spaces. For 1T   equation (20) in 

discrete time and continuous state spaces can be written as 
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Knowing that 
1r  is normally distributed with mean and variance defined in (9) and (10) 

respectively, we have that 
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and 
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As we know that 
2r  is normal random variable, we can derive the solution of the last 

equation. Having the solution  02,B r  and multiplying it with factor defined in (23) for 

2T   we get the bond price with the duration of two years for any 
0r  . Continuing this 

process, we can calculate any  0,B T r , for T  . Multiplying  0,B T r  with factor 

defined in (23) we get bond prices for any duration and any 
0r  . 

 

There is a requirement to have certain relations between bond prices if we want to have a 

sound model. One way to check the soundness of the bond market model is to compare 

bond prices derived using the three models for the interest rate. We expect that, for the 

same duration and for the same initial value of the interest rate, bond prices have similar 

values. The second important thing we need to have in order to deem the bond prices 

model as a sound one is to have the same pattern when bond prices are compared in each 

model. It means that we expect decreasing bond prices as the value of the interest rate 

during the previous year increases. 

 

In Table 1, we present the prices of zero–coupon bonds with the duration of five and ten 

years and different values of the interest rate during the previous year, for discrete time and 

state spaces, for discrete time and continuous state space, and for the Vasicek model. 
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Table 1: Calculated bond prices for the following values of the parameters: 0.012a  ,  0.6b 

0.02   and 0,1528r  , and 0.009023da  , 0.451188db   and 0.015262d  . Number 

of the interest rate states 15N  , the end points for the  abscissa are 2.44%  and 6.44% . 

 
 Interest 

rate 

Duration 5 year Duration 10 year 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time/ 

continuous 

state 

spaces 

Continuou

s 

time/state 

spaces, 

Vasicek 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time/ 

continuous 

state 

spaces 

Continuou

s 

time/state 

spaces, 

Vasicek 

1 –2.44% 92.96 93.78 95.55 82.35 83.20 84.84 

2 –2.21% 92.79 93.53 95.21 82.19 82.97 84.52 

3 –1.81% 92.49 93.10 94.60 81.91 82.57 83.96 

4 –1.25% 92.04 92.50 93.77 81.50 82.01 83.19 

5 –0.56% 91.44 91.77 92.75 80.96 81.33 82.24 

6 0.22% 90.73 90.93 91.59 80.30 80.54 81.16 

7 1.09% 89.92 90.02 90.34 79.56 79.70 79.99 

8 2.00% 89.06 89.08 89.05 78.77 78.83 78.80 

9 2.91% 88.21 88.15 87.79 77.99 77.97 77.62 

10 3.78% 87.42 87.27 86.59 77.27 77.15 76.51 

11 4.56% 86.73 86.48 85.50 76.64 76.41 75.50 

12 5.25% 86.17 85.79 84.57 76.12 75.77 74.64 

13 5.81% 85.74 85.24 83.83 75.73 75.26 73.95 

14 6.21% 85.46 84.84 83.30 75.47 74.90 73.46 

15 6.44% 85.30 84.62 83.00 75.33 74.69 73.18 

 

We see that long term expected values / 0.02a b   as well as / 0.02d da b  , as we 

expected. When we compare bond prices with the same duration in each row we see 

similar values. For the two presented values of the bond duration, we can see the biggest 

range of bond prices is for the Vasicek model and the lowest is for discrete time and state 

spaces. However, observing the columns for the first and for the second approximation of 

the Vasicek model we can say that bond prices behave quite reasonably in terms of 

changes as function of the value of the interest rate during the previous year. 

 

In Table 2 we present the values of the rates of return on 10 year rolling bonds during one 

year assuming the value of the interest rate during the previous year being 1.25%  and 

2.00% . 
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Table 2: Rates on 10 year rolling bonds during one year assuming the value of the interest rate 

during the previous year is 1.25%  and 2.00% , and the value of interest the rate in the following 

year given in the first column. 

 
 Interest 

Rate 
 

 
19,

1
10, 1.25%

B r

B



 in % 

 

 
19,

1
10,2.00%

B r

B
  in % 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time/ 

continuous 

state 

spaces 

Continuou

s time/state 

spaces, 

Vasicek 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time 

continuous 

state 

spaces 

Continuou

s 

time/state 

spaces, 

Vasicek 

1 –2.44% 3.55 3.96 4.51 7.14 8.15 10.33 

2 –2.21% 3.36 3.67 4.11 6.94 7.85 9.91 

3 –1.81% 3.01 3.17 3.42 6.57 7.33 9.18 

4 –1.25% 2.49 2.47 2.47 6.04 6.61 8.18 

5 –0.56% 1.81 1.62 1.30 5.33 5.72 6.95 

6 0.22% 0.98 0.65 –0.02 4.48 4.71 5.54 

7 1.09% 0.05 –0.41 –1.45 3.51 3.61 4.03 

8 2.00% –0.94 –1.49 –2.92 2.49 2.48 2.48 

9 2.91% –1.92 –2.57 –4.37 1.48 1.36 0.95 

10 3.78% –2.83 –3.59 –5.74 0.54 0.30 –0.49 

11 4.56% –3.62 –4.51 –6.97 –0.28 –0.66 –1.79 

12 5.25% –4.27 –5.31 –8.03 –0.95 –1.49 –2.91 

13 5.81% –4.76 –5.94 –8.88 –1.46 –2.15 –3.81 

14 6.21% –5.09 –6.40 –9.48 –1.80 –2.62 –4.44 

15 6.44% –5.27 –6.66 –9.83 –1.99 –2.89 –4.80 

 

 

We suppose here that at the beginning of the year we know the value of the interest rate in 

the previous year and that 10 year zero coupon bond is priced according to that value. This 

known value of the interest rate is written in the header, and we present examples for the 

two value 
0 1.25%r    and 

0 2.00%r  . Then we suppose that during the following year 

the value of the interest rate 
1r  appears to be as in the first column. At the end of the year 

we have the price of the 9 year bond and calculate the rate of return on 10 year rolling 

bonds by    1 09, 10, 1B r B r  . We can see in Table 2 that the rates of return on 10 year 

rolling bond investment have the highest range of values for the Vasicek model, the lower 

for the first approximation and the lowest for the second approximation. It means that in 

our examples, the variability of bond investment rates is lower compared to the Vasicek 

model. However, at the same time we can see a regular behavior of returns for both 

approximations. If   takes lower values than 0.02 , then we get the rates on ten years 

rolling bond investment using approximations that are more similar to the rates calculated 

from the Vasicek model. 
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