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Abstract: In this study, the nonlinear vibrations of Euler-Bernoulli multiple-stepped 
beam are investigated. The beam is simply supported at both ends. The equations of 
motions are obtained using Hamilton’s principle and made non-dimensional. The 
stretching effect induced non-linear terms to the equations. Forcing and damping terms 
are also included in the equations. A perturbation method is applied to the equations of 
motions. The first terms of the perturbation series led to the linear problem. Natural 
frequencies for the linear problem are calculated exactly for different step cases. Second 
order non-linear terms of the   perturbation series behaved as corrections to the linear 
problem. Amplitude and phase modulation equations are obtained.  Non-linear free and 
forced vibrations are investigated in detail. These analyses are repeated for different step 
ratios and step numbers. 
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Introduction 
 

  In real life, many engineering problems can be modeled as stepped beams such as bridges, rails, 
automotive industries, work pieces and machine elements. The most important aspect of vibration analysis is  the 
calculation of natural frequencies. If the system is forced with a frequency close to its natural frequencies, the 
system comes to resonance state and the amplitudes increase dangerously. While computing the natural 
frequencies of the systems, assuming the systems to be linear makes the calculations easier but the results are 
usually not reliable. Because no system acts linearly obtained linear results may deceive us. Therefore, nonlinear 
effects originated from the stretching during the vibration of the beam should be included in the computations as 
well. 

Many studies on beam vibrations, both linear and nonlinear, have previously been performed. The studies 
prior to 1979 are summarized by Nayfeh and Mook(1979). Particularly, the nonlinear behavior caused by the 
immobility of beam-ends has been analyzed by various researchers. Qaisi(1997) obtained the nonlinear  
vibration of beams with simply and clamped supports by using a power series approach and compared the results 
with existing solutions. Özkaya et al (1997) analyzed mass beam system for different boundary conditions. By 
considering the effects of stretching, they solved the obtained problem with the method of multiple scales, a 
perturbation technique. Özkaya(2002) considered a beam-masses system under simply supported end conditions. 
The effects of positions, magnitudes and number of the masses are investigated. For slightly curved beams with 
stretching, one may refer to Rehfield(1974) and Öz at al(1998). 

Stepped beams are increasingly used in various branches of engineering, and so there are numerous studies 
on the vibration analysis of stepped beams with circular, rectangular cross sections and shafts. The first study on 
this subject is done by Taleb and Suppiger(1961). In their study, they obtained the frequency equation of a 
stepped beam with simple support and found the natural frequencies via the solution of the equation. Levinson 
(1976), on the other hand, listed the frequency equations for stepped beams with simple support but did not 
acquire any numeric results. Sato (1980) performed non-linear free vibration analysis for stepped beams with 
rectangular cross section and clamped and simple supports at both ends, and used the transfer matrix method for 
the solution. Balasubramanian and Subramanian (1985) analyzed vibrations for beams stepped at the middle. In 
another study, Balasubramanian et al (1990) acquired natural frequencies for high mode structures by using the 
study of Balasubramanian and Subramanian (1985). Jang and Bert (1989) obtained the frequency equation for 
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stepped beam under various boundary conditions and computed the smallest natural frequencies for a circular 
cross-section beam. They compared the results with the results of Bert and Newberry (1986), who used a finite 
element analysis. In another study, Jang and Bert(1989) obtained natural frequencies for high mode structures 
using the frequency equation they acquired from the study by Jang and Bert (1989). Wang (1991) studied the 
vibration of stepped beams on elastic foundations. Rosa et al (1995) presented the free vibration analysis of 
stepped beams with intermediate elastic supports. Lee and Bergman (1994) submitted the vibration of stepped 
beams and rectangular plates. In their study, the structure with discontinues is divided into elemental 
substructures and the displacement field for each is obtained in terms of its dynamic Green’s function.  Aydın  
and Aksu(1981) used finite differences to estimate free vibration characteristics of regular changing beams and 
regular and irregular stepped beams and shafts.  Energy functionality is minimized based on translocation 
elements and is computed as natural frequencies and mode forms. Krishnan at al(1998), studied the analysis of 
stepped beams using finite difference method and a single differential equation. In a study performed by 
Naguleswaran(2002), equations of motion of three different Euler-Bernoulli stepped beams with all states of 
boundary conditions are obtained and three natural frequencies are computed using the equations of motion. In 
another study, Naguleswaran(2002) considered three different types of stepped beams and  investigated 
vibrations of a beam with up to three step changes. The dynamic stability of a stepped beam carrying mass is 
studied by Aldraihem and Baz(2002). The stepped beam equations of motion developed a discrete parameter 
form and a finite element form.  Aydogdu and Taskin(2007) explored  free vibration of simply supported FG 
beam and also they found the equations by applying Hamilton’s principle. They used Navier type solution 
method in order to obtain frequencies. Kwon and Park(2002), focused on the effect of the position of the stepped 
point and thickness ratio on the dynamic characteristics of the system. The equation of motion and boundary 
equations are analytically obtained by using Hamilton’s principle. The exact solutions are compared with the 
results obtained by FEM. Naguleswaran (2003) investigated the vibrations of beams with up to three step 
changes in cross section and axial force. The frequency equation for classical boundaries is expressed and the 
first three frequency parameters for the three types of beams are displayed. Kisa and Gurel(2007) represented the 
free vibration analysis of uniform and stepped cracked beams with circular cross sections. They used the finite 
element method and mode synthesis method and a non-linear problem separated into linear subsystems.  Li 
(2001) analyzed the natural frequencies and mode shapes of multi-step beam and non-uniform beam with an 
arbitrary number of cracks and concentrated masses.  Dong et al (205) investigated the natural frequencies and 
mode shapes of a stepped laminated composite Timoshenko beam. Their developed method can be used to 
deduce the frequency function of laminate stepped beams under other complex boundary conditions.  

In this study, nonlinear vibration of an Euler-Bernoulli multi-stepped beam is considered. Natural 
frequencies are calculated for different locations, magnitudes and number of the steps. Nonlinear vibration 
analysis for multi-stepped beams is performed and the contributions of nonlinear terms on natural frequencies 
are investigated. Phase-modulation equations are acquired and frequency amplitude graphs are plotted using 
these equations. 
 
 
Equation of Motion 

 
For the system show in Fig. 1, the Lagrangian can be written as follows 
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where L is the length, ρ is the density, Am+1 is cross sectional area of multi-stepped beam, E is Young’s modulus, 
Im+1 is the moment of inertia of the multi-stepped beam’s cross-section with respect to the neutral axis, n is 
number of steps, w is transverse displacement, ( . ) and (  )′′′′ denote differentiations with respect to time t* and the 
spatial variable x* respectively.  
The terms in Eq. (1) are the kinetics energies due to transverse motion, elastic energies due to bending and 
stretching of the beam, respectively. 
        Invoking Hamilton’s principle, 
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and substituting the Lagrangian from Eq. (1), performing the necessary algebra and eliminating the axial 
displacements between equations, one finally obtained the following non-linear coupled integro-differential 
equations of motion: 
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There are n+1 equations in Eq. (4). In equation (4) 11 / ddrr +=α  and 1=oα ( αr is the ratio of r+1 th diameter to 

the first diameter). Note that viscous damping coefficient µ*, external excitation with amplitude F*
m+1 and 

frequency Ω* will be added to the equations. The boundary conditions can be written for this equation as follows 
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The equations and boundary conditions are made dimensionless using the following definitions 
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where Rm+1 is the radius of gyration of the  stepped beam cross-section with respect to the neural axis. 
Substituting the dimensionless parameters into the equations of motion yield for the general case 
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and boundary conditions are 
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The equation of motion including damping and forcing is given below 
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In equations (7 and 9) 11 / ddmm +=α , 1=oα , η0=0 and ηn+1=1.  

 

Approximate Analytical Solution 

In this section, approximate solutions of Eqs. (8) and (9) are  searched with the boundary conditions. The method 
of multiple scales is applied to the partial differential equation systems and boundary conditions directly. Due to 
the absence of quadratic non-linearities, one can assume expansion of the form 
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where ε is a small book-keeping parameter artificially inserted into the equations. This parameter can be taken 1 
at the end upon keeping in mind, however, that deflections are small. We therefore investigated a weakly non-
linear system. T0=t and T2=ε2t are the fast and slow time scales. Let’s consider only the primary resonance case 
and hence, the forcing and damping terms are ordered so that they counter the effect of non-linear terms 
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the time derivatives are written as 
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Inserting Eqs. (10)-(12) into Eqs. (8) and (9), and equation coefficients of like powers of ε, one obtained 
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3.1.  Exact Solution To The Linear Problem 
The linear problem is governed by Eqs. (13) and (14). Assuming solutions of the form 
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where cc stands for complex conjugate of the preceding terms and substituting Eq. (17) into Eqs. (13) and 
(14), one obtains 
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for the solution of Eq. (18). Where β= ω  and mmk α/1= . When the boundary and continuity conditions are 

applied to the equation of motion, frequency equations can be obtained. The multi-stepped beam system with 
simple end conditions is shown in the Fig.1.  

 
          0),0(),0( 11 =′′= twtw       
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Figure 1: A simply supported multi-stepped beam   
 
The transcendental equation is numerically solved for the first three modes. The natural frequencies are listed for 
different α and η. Natural frequencies are given for one; two and three-step in Table (1-3).  

αααα1111    ηηηη1111 ωωωω1111 ωωωω2222 ωωωω3333 λλλλ1111 

 
 

0.5 

0.2 4.76136 18.940256 45.241049 14.27798 

0.4 4.519872 23.954239 62.489572 9.10129 

0.6 5.154486 32.960370 59.994383 5.85852 

0.8 7.739925 28.929586 75.661069 2.86631 

 
 

0.8 

0.2 7.913373 32.063323 73.589218 3.70809 

0.4 8.140749 34.989506 77.524216 3.20758 

0.6 8.813577 35.901440 81.710293 2.38701 

0.8 9.639997 37.244195 83.454455 1.79947 

1.0 0.5 9.869604 39.478417 88.826439 1.85055 

 
 

2.0 
 

0.2 15.479851 57.859172 151.322138 0.35828 

0.4 10.308972 65.920741 119.988766 0.73231 

0.6 9.039745 47.908479 124.979144 1.13766 

0.8 9.522719 37.880512 90.482097 1.78475 

 
 

3.0 

0.2 13.881543 74.798548 224.751695 0.28824 

0.4 7.831783 88.851217 136.674622 0.35699 

0.6 7.149344 46.586371 138.167797 0.58359 

0.8 8.747012 33.945355 85.829771 1.40013 

 
Table- 1: The first three natural frequencies and the non-linear frequency correction coefficients of one-step beam for 

different step ratios and step locations 
 

 

αααα1111 αααα2222 ηηηη1111    ηηηη2222    ωωωω1111    ωωωω2222    ωωωω3333    λλλλ1111 

  0.1 0.3 5.953690 25.127266 59.138766 8.40157 

X2 

Xn 

X1 
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0.8 

 
0.6 

0.1 0.5 6.323862 28.201730 59.967335 6.45813 
0.1 0.7 7.174081 27.950965 66.279061 4.28819 
0.1 0.9 7.854582 31.031939 68.938398 3.49167 
0.3 0.5 6.256803 29.719228 64.978786 6.27273 
0.3 0.7 7.196704 29.455923 71.398037 4.19713 
0.3 0.9 7.934874 32.638595 74.188639 3.29743 

 
 

0.4 
 

 
 

0.8 

0.1 0.3 4.890838 23.486590 54.397537 9.90087 
0.1 0.5 3.714266 21.794759 46.113427 15.63241 
0.1 0.7 3.630831 15.493808 39.556262 24.40730 
0.1 0.9 3.875303 14.934684 32.864094 31.72566 
0.3 0.5 3.611960 23.322577 57.524918 11.02089 
0.3 0.7 3.265050 15.487205 57.356942 16.93990 
0.3 0.9 3.362330 15.177929 41.130527 19.45277 

 
 

2.0 

 
 

1.2 

0.1 0.3 11.466482 47.998109 110.501310 0.84014 
0.1 0.5 12.000198 58.546396 108.929445 0.55186 
0.1 0.7 14.794350 56.059170 134.507356 0.31517 
0.1 0.9 18.596803 65.717636 136.873060 0.18292 
0.3 0.5 10.380079 41.728688 107.578383 0.56262 
0.3 0.7 11.193682 41.884783 140.201020 0.42031 
0.3 0.9 12.166286 57.264207 141.771501 0.51229 

 
 

2.0 

 
 

4.0 

0.1 0.3 20.481951 111.238748 236.966957 0.11624 
0.1 0.5 17.494518 94.838302 211.264803 0.10834 
0.1 0.7 17.570170 69.802282 169.750578 0.15595 
0.1 0.9 18.800126 68.051795 145.611558 0.20869 
0.3 0.5 9.383658 104.081462 195.491493 0.30933 
0.3 0.7 11.159667 62.918320 167.058284 0.46987 
0.3 0.9 12.173198 59.990005 149.741932 0.58125 

 
Table- 2: The first three natural frequencies and the non-linear frequency correction coefficients of two-step beam for 

different step ratios and step locations 
 
 

αααα1111 αααα2222 αααα3333 ηηηη1111    ηηηη2222    ηηηη3333    ωωωω1111    ωωωω2222    ωωωω3333    λλλλ1111    

 
0.8 

 
0.6 

 
0.3 

0.1 0.3 0.5 2.672081 18.112328 41.765754 30.50196 
0.1 0.4 0.8 4.599781 19.681724 52.357778 13.61319 
0.2 0.5 0.7 3.421390 24.398166 50.468413 19.15705 
0.3 0.5 0.9 5.884991 25.159252 54.127598 5.92665 
0.5 0.7 0.9 6.558926 28.234674 60.753715 4.97262 

 
2.0 

 

 
1.0 

 

 
0.8 

 

0.1 0.3 0.5 7.564975 36.586408 86.878086 2.02849 
0.1 0.4 0.8 8.737297 43.147793 99.166220 1.01868 
0.2 0.5 0.7 8.069798 41.320096 80.532388 0.89315 
0.3 0.5 0.9 8.686695 38.685370 87.109404 0.68235 
0.5 0.7 0.9 8.669208 38.341971 88.505866 0.67547 

 
2.0 

 
4.0 

 

 
6.0 

0.1 0.3 0.5 18.078519 153.972235 271.133296 0.09026 
0.1 0.4 0.8 18.296694 112.443789 199.559828 0.10216 
0.2 0.5 0.7 12.185894 86.740381 260.992262 0.20382 
0.3 0.5 0.9 9.352935 103.998808 195.308334 0.30903 
0.5 0.7 0.9 7.798921 59.074062 192.978599 0.56567 

 
Table-3: The first three natural frequencies and the non-linear frequency correction coefficients of three-step beam for 

different step ratios and step locations 

 
 

Non-Linear Problem 

 

 Solving order ε3, one obtains the non-linear corrections to the problem. Because the homogeneous Eqs. 
(13) and (14) have a non-trivial solution, the non-homogeneous problem (15) and (16) will have a solution only 
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if a solvability condition is satisfied. To determine this condition, we firstly separated the secular and nonsecular 
terms by assuming a solution in the form of  

),,(),( 201213)1(
0 TTxWcceTxw m

Ti
mm +++ ++= ωφ                                             

(21) 
By substituting this solution into Eqs. (15) and (16), the terms producing secularities are eliminated. 

Hence the part of the equation determining φ(m+1) is as follows: 
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In obtaining these equations, one emplayes the first order solutions (17). One can also assume that the external 
excitation frequency is close to one of the natural frequencies of the system; that is, 

σεωΩ 2+=                                    
(24) 

where σ is a detuning parameter of order 1. After some algebraic manipulations, one can obtain the solvability 
condition for Eqs. (22) and (23) as 
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where the equations are normalized by requiring   
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The complex amplitude A can be written in terms of a real amplitude a and a phase θ 

2)(
2

1
2

TieTaA θ=                                                                                                     

(27) 

Substituting Eq. (27) into Eq. (25), and separating real and imaginary parts, one obtained finally phase and 
modulation equations  
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where Λ  and γ  are defined as 
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In this section amplitude and phase modulation equations are determined from the non-linear analysis for 
multiple stepped.  
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Numerical Results  

 

In this section numerical examples are presented for different step numbers. Firstly, the linear natural 
frequencies for different step numbers (n=1,2,3)  for various α and η values are found and given in Tables 1-3. 
As long as the beam supports are fixed nonlinearity is actually negligible though it has some cubic order of 
perturbation. This effect which is well known as slenderness parameter is considered in the numerical results 
presented. When the step number is increased, the natural frequency value decreased for diminishing step ratios. 
The decrease is inclined to the value of cone’s natural frequency. When  1=η , the natural frequency values are 

obtained as straight simple supported beam. Also, the linear natural frequencies for various step ratios are 
compared with those given by Naguleswaran (2002) and are observed similar results.   

Then, the non-linear frequencies for free undamped vibrations are calculated similarly. In equation (28), by 
taking µ=f=σ =0, one obtains 

a′=0  and a = a0  (constant)                                              
(30) 

Note that a0 is the steady-state real amplitude of response. Hence the non-linear frequency is  

2
0

'
n1 aωθωω λ+=+=                                  (31)  

where  

ω
λ

2

16

3 bΛ
=                                   

(32) 

In this order of approximation, thus, the non-linear frequencies had a parabolic relation with respect to the 
maximum amplitude of vibration. λ could be defined as the non-linear correction coefficient. For different α and 
η, the nonlinear correction coefficients are listed in Tables 1-3 for the first mode for different step numbers. λ is 
a measure of the stretching effect. The non-linearities are of hardening type. When the stepped ratio is increased, 
the nonlinear frequency correction coefficient decreased for one step case. Similarly, as the step location 
changed from left to right, the stretching effects decreased regardless of the step ratios.  

  The curves showing the relationships between nonlinear frequency and amplitude are given in Figures 
2-4 for different α, η values and different step numbers. In figures 2, non-linear frequency-amplitude curve is 
drawn for one step case and different step ratios. In figure-2, as η  increased, the effects of stretching decreased. 

In figure 3, non-linear frequency versus amplitude is plotted for two step case only when η1=0.3 and η2=0.5, 0.7, 
0.9. For 1α =2.0 and 2α =4.0, as the stepped location (η2 ) increased, the stretching effects increased. Figs. 4 

show non-linear frequency versus amplitude for three step case for the first mode only when η1-η2-η3: 0.1-0.3-
0.5, 0.2-0.5-0.7, and 0.3-0.5-0.9. For 1α =0.8, 2α =0.6 and 3α =0.3, as the step location shifted from left to right, 

the stretching effects decreased. For all step cases, the stretching effects decreased as step ratios increased. The 
results for one step, two steps and three steps are given in Figure 5-7 for different step parameters.  

One now can consider damping and external excitation case. In Eq. (28), when the system reaches the 
steady state region, a′ and γ′  vanish and hence one obtains the following equations. 

2
22

222

µ
a4ω

f

ω

ba

16

3
σ −

Λ
= m                                           

(33) 

The detuning parameter shows the nearness of the external excitation frequency to the natural frequency of 
system. Several figures can be drawn using Eq. (33) assuming f=1 and damping coefficient µ=0.2. Frequency 
response curves are presented in Figs. 8-11. In Figs. 8-9, the frequency–response curves for one step case are 
shown when  η1=0.2, 0.4, 0.6, 0.8. In Fig. 8, when η1 decreased and provided that other parameters are kept 
constant, multi-valued regions increased drastically (α1=0.5). In Fig. 9, the effect of forcing is maximum when 
η1=0.6 and, is minimum when η1=0.2(α1=3.0). Fig. 10 shows frequency–response curves for two steps case for 
the first mode only when η1=0.1 and η2=0.3, 0.5, 0.7, 0.9. When the step position (η2) is shifted from left to right, 
the amplitudes decreased ( 1α =0.8 and 2α =0.6). Fig. 11 shows frequency–response curves for three steps case 
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for the first mode only when η1-η2-η3: 0.1-0.3-0.5, 0.2-0.5-0.7, and 0.3-0.5-0.9. The effect of forcing is 
maximum η1=0.3, η2=0.5 or η3 = 0.9, is minimum when η1=0.1, η2=0.3 or η3=0.5. Similar conclusions can be 
drawn. The effect of stretching bends the curves to the right causing multi-valued regions for the solution. This 
phenomenon is the well-known jump phenomena. 
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    Figure 2: Non-linear frequency versus amplitude for                      Figure 3: Non-linear frequency versus 
amplitude for different    different step location values (first  mode, one step α1=0.5)                  step location 
values(first mode; two step α1=2.0, α2=4.0)    
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Figure 4:Non-linear frequency versus amplitude for different                Figure 5: Non-linear frequency versus 
amplitude for 
step location values(first mode, three step α1=0.8,α2=0.6,α3=0.3)           different step ratio values (first mode, one 
step, η1=0.2) 
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    Figure 6: Non-linear frequency versus amplitude for different    Figure 7:  Non-linear frequency versus 
amplitude for different        
    step ration values (first mode, two step η1=0.1, η2=0.3)              step ration values (first mode, three step 
η1=0.2, η2=0.5, η3=0.7) 
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Figure 8: Frequency-response curves for different step          Figure 9: Frequency-response curves for different                

locations (first mode, one step, α=0.5)                                       step locations (first mode, one step, α1=3.0) 
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Figure 10: Frequency-response curves for different step              Figure 11: Frequency-response curves for 
different 
           locations (first mode, two step α1=0.8 α2=0.6)                step locations (first mode, three step α1=2.0, 
α2=4.0, α3=6.0) 
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Concluding Remarks 

The non-linear response of multi-stepped beam is investigated. The beam is simply supported at both ends. 
The non-linear equations of motion including stretching due to immovable end conditions are derived. Forcing 
and damping terms are added to the equations. Linear and non-linear analyses are performed. Approximate 
solutions are searched by applying the method of multiple scales directly to the partial differential equations. The 
first term led to the linear problem. When the boundary conditions and continuity are applied to the equation of 
motion, frequency equations are obtained and given for one step beam. Mode shapes and natural frequencies are 
calculated for different step ratios, step locations and number of the steps. The second terms provided the non-
linear corrections to the linear problem. Non-linear frequency-amplitude and forcing frequency-amplitude 
relations are investigated and plotted. For one step beam, when the step number is increased, the natural 
frequency value decreased for diminishing step ratios. The decrease is inclined to the value of cone’s natural 
frequency. As the step ratio is increased, the natural frequencies and nonlinear frequencies generally increased, 
but after the step ratio value 2, we observed a decreasing trend in nonlinear frequencies. One can observe that the 
stretching caused a non-linearity of the hardening type. When the step ratio is increased (α), the effect of 
stretching on the non-linear frequencies generally decreased.  For forced and damped vibrations, since the non-
linearity is of hardening type, the frequency-response curves bent to the right, causing an increase in the multi-
valued regions for the solution. 
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