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1. Introduction

Renewable energies have become important due to the classic electricity infrastructure 
turning towards a distributed power generation system [1]. Thus, the role of an interface between 
generation systems and the electricity network will be filled in by the electricity networks of the 
future, which will extensively use power electronic devise, information and communication 
technology applications [2]. The power converters, grid-connected, must be carefully designed 
and controlled to achieve an optimal and efficient operation in distributed power generation 
systems [3].  

One important issue in this distributed power generation system is power measurement 
in each internal connecting point of the power system. Typically, power calculation methods 
inherently have built-in zero-crossing detection (ZCD) of grid voltage and current. But, ZCD 
suffers from voltage (current) sags, drops, spikes and it is not a reliable scheme. As consequence, 
the power calculation method fails. 

In this paper, a new power calculation method has been presented. This method is based 
on Frequency Locked Loop (FLL) and has enhanced features over classical methods (ZCD) for 
power calculation widely used in industry. The FLL is a non-linear closed-loop system that can 
be used in a wide variety of applications such as grid synchronization, flux estimation, and control 
of motor drives without using sensors [4]. 

2. Methodology

The first stage of this paper was based on state of art. Due to the nature of the paper, 
proper research had to be performed, as the FLLs are a rather unexplored topic. Such issues are 
the complexity of the proposed algorithms, DC offset which makes approximations impossible, 
the sensitivity of integral-based calculations to external sources, which are the focus of this paper. 

The second stage was to develop a mathematical model for the issued problem. The power 
calculation algorithm is based on addition theorems for trigonometry. By separating the voltage 
and current into respective v’s and I’ve components by using the FLL, and applying addition 
theorems to them, a simple way to calculate active and reactive power is achieved. 

The third stage was to perform simulations using the Matlab/Simulink software. 
Simulation results confirmed the effectiveness for both the power measuring algorithm, as well 
as FLL in the task of estimating rapid frequency change. 

The fourth stage is to prepare the system for implementation onto an FPGA board. This 
step has yet to be performed, due to its nature and size, and is intended to be performed in future 
work. 

3. Proposed Power Calculation Method Based on SOGI-FLL

SOGI-FLL Short Overview 

The generalized integrator (GI) is the basis in the implementation of most FLLs. Roughly 
speaking, the GI’s structure is based on a double integrator which provides an infinite gain at its 
resonant frequency and behaves as the amplitude integrator of sinusoidal signals. There are 
various realizations of the GI. The most popular way of implementing the FLL-based 
synchronization techniques, which is the focus of this paper, is the second-order generalized 
integrator (SOGI) [5]. 

The SOGI-FLL is a simple, and yet valuable tool because, in addition to providing filtered 
in-phase and quadrature-phase versions of its input, it can directly estimate frequency, and 
indirectly the phase angle and amplitude of the signal. The SOGI-FLL, nevertheless, has a limited 
filtering capability. In other words, in the presence of DC offset, harmonics, and inter-harmonics, 
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the estimated quantities by the SOGI-FLL suffer from ripples [5]. 
The SOGI-FLL estimates the frequency of the input signal. The frequency of the input 

signal does not experience sudden changes. Consequently, the FLL algorithm shows greater 
performance, when the phase angle of the input signal changes, than its PLL-based counterpart 
[1]. This GI is based on the principle that the time-domain convolution product of a sinusoidal 
function, by itself, gives rise to the original function which is multiplied by the time variable. 
Therefore, a processing block with a transfer function that is equal to the Laplace transform of a 
sinusoidal function (i.e., a resonator), will behave as an “amplitude integrator” for a sinusoidal 
signal applied at the input. Additionally, the in-quadrature combination of the sine and cosine 
transfer functions leads to an “ideal integrator” which is independent of the phase angle of the 
sinusoidal input signal [1]. 

Proportional-resonant controllers are based on the GI. Also, the GI has been applied to 
adaptive filtering applications and the PLL implement structure of this filter is shown in Fig. 1, 
where it is seen that the resonance frequency of the second-order generalized integrator (OGI) is 
an external parameter called ω’. 

FIGURE 1. Block diagram of OGI [1]. 
The transfer function of the SOGI is given by: 

SOGI(s) = 
𝑣

𝑘𝜀𝑣
; (s) = 

𝜔𝑠

𝑠2𝜔′2
     (1) 

The resonance frequency is noted as ω’, in general case, so it differs from the input frequency ω. 

The two in-quadrature output signals of the adaptive filer in Fig. 1, i.e., v’ and qv’, are defined by 
the following transfer functions: 

𝐷(𝑠) =
𝑣′

𝑣
(𝑠) =

𝑘𝜔′𝑠

𝑠2 + 𝑘𝜔′𝑠 + 𝜔′2
(2𝑎) 

𝑄(𝑠) =
𝑞𝑣′

𝑣
=

𝑘𝜔′2

𝑠2 + 𝑘𝜔′𝑠 + 𝜔′2
(2𝑏) 

As (2a) shows, the bandwidth of the bandpass filter is determined by the gain k and is 
independent of the central frequency ω’. The same happens with the low-pass filter of (2b), in 
which the static gain only depends on gain k [1]. 
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The figure below represents an exemplary SOGI-FLL synchronization system. The input 

grid frequency  is directly detected by the FLL. On the other hand, the phase angle and 
amplitude of the input ought to be calculated indirectly. 

FIGURE 2. SOGI-FLL, a single-phase grid synchronization system [1]. 

The transfer function from the input signal v to the error εv is given by: 

𝐸(𝑠) =
𝜀𝑣

𝑣
(𝑠) =

𝑠2 + 𝜔′2

𝑠2 + 𝑘𝜔′𝑠 + 𝜔′2
(3) 

A frequency error εf is defined as the product of qv’ by εv. The average value of the error 
εf will be positive when ω < ω’, zero when ω = ω’, and negative when ω > ω’, where are ω’ - 
resonance frequency (eg. 50 Hz) and ω – input grid frequency. As shown in Fig. 2, the DC 
component of the estimated frequency error can be made zero by shifting the SOGI resonance 
frequency ω’ until it matches the grid frequency on the input ω. This is achieved by an integrated 
controller with a negative gain −γ. 

In this case, the linear control analysis techniques cannot be applied directly to set the 
value of the FLL gain γ due to the frequency adaptation loop being nonlinear. As seen in [6], the 
averaged dynamics of the FLL with ω’ ≈ ω can be described by: 

�̇̅�′ = −
𝛾𝑉2

𝑘𝜔′
(�̅�′ − 𝜔) (4) 

FIGURE 3. SOGI-FLL with feedback-based FLL gain normalization [1]. 

According to the equation (4) the value of γ can be normalized: 
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𝛾 = −
𝑘𝜔′

𝑉2
Γ (5) 

to obtain the feedback-based linearized system shown in Fig. 4. This system does not depend on 
either the grid variables or the SOGI-QSG gain. 
The FLL gain normalization block, shown in Fig. 3, computes the SOGI control parameter k as 
well as the output variables ω’ and V2 = v’2 + qv’2 to achieve the response linearization of the FLL. 
The time constant Γ is the parameter for setting the dynamics of the frequency estimation. 

FIGURE 4. Simplified frequency adaptation system of the FLL [1]. 

The transfer function of the first-order frequency adaptation loop in Figure 4 is given by: 

𝜔
′

𝜔
=

Γ

𝑠 + Γ
(6) 

The settling time is highly dependent on the gain parameter Γ and can be approximated by: 

𝑡𝑠(𝐹𝐿𝐿) ≈
5

Γ
(7) 

FIGURE  shows the time response of SOGI-FLL with k = 2 and Γ = 50 when the frequency of the 
input grid signal suddenly varies from 50 to 45 Hz. As the figure shows, the detected frequency 
fits a first-order exponential response. The settling time is 100 ms, which matches with the 
calculation in equation (7) [1]. 

FIGURE 5. Time response of FLL in presence of a frequency step [1]. 

One important thing to conclude, regarding the frequency estimation, is that the FLL system 
estimates the frequency error, Δεf. Let us suppose step change frequency Δεf at the input of the 

FLL. Laplace transformation of the step change frequency is given with 
Δεf

𝑠
. Using the final value 

theorem (8), it is easy to prove that in the steady-state, FLL estimates step frequency change Δεf 
(9). 
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lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠) (8) 

lim
𝑠→0

(𝑠 ∗
Γ

𝑠 + Γ
(𝑠) ∗

Δε𝑓

𝑠
) = Δε𝑟 (9) 

By plugging s to be zero, the expression goes to Δεf, proving and simplifying the conclusion 
regarding the frequency estimation. 

Proposed power calculation method 

Power calculation, for the measurement system proposed in this paper, is performed using 
addition theorems from trigonometry. Since the SOGI-FLL subsystem gives two output 

components of voltage/current in quadrature (phase-shifted for /2), v’ and qv’ or i’ and qi’ 
(Figure 2) respectively, they can be used to calculate powers rather simplistically. Considering 
that values v’, qv’, i’ and qi’ are Vcosφu, Vsinφu, Icosφi and Isinφi, these fit perfectly into 
trigonometric addition theorems. 

𝑉𝑠𝑖𝑛𝜑𝑢 ∗ 𝐼𝑠𝑖𝑛𝜑𝑖 + 𝑉𝑐𝑜𝑠𝜑𝑢 ∗ 𝐼𝑐𝑜𝑠𝜑𝑖 = 𝑉𝐼(𝑐𝑜𝑠𝜑𝑢𝑐𝑜𝑠𝜑𝑖 + 𝑠𝑖𝑛𝜑𝑢𝑠𝑖𝑛𝜑𝑖) (10) 

From equation (10), the right side represents the cosine addition theorem cos(α-β). By applying 
the mentioned theorem, the following is true. 

𝑃 = 𝑉𝑚𝑎𝑥 ∗ 𝐼𝑚𝑎𝑥(𝑐𝑜𝑠𝜑)/2 (11) 

Since most power measurement systems consider RMS values, equation (11) can be rewritten in 
form: 

𝑃 =
𝑉𝑚𝑎𝑥𝑡ℎ𝑒 

√2
∗

𝐼𝑚𝑎𝑥

√2
(𝑐𝑜𝑠𝜑) (12) 

or: 
𝑃 = 𝑉𝑟𝑚𝑠𝑖𝑙𝑎𝑟𝑙𝑦 ∗ 𝐼𝑟𝑚𝑠(𝑐𝑜𝑠𝜑) (13) 

Sim , reactive power can be calculated. 
𝑄 = 𝑉𝑟𝑚𝑠 ∗ 𝐼𝑟𝑚𝑠(𝑠𝑖𝑛𝜑) (14) 

Equation (14) is obtained from the sine addition theorem, which is simply achieved by: 

𝑉𝑠𝑖𝑛𝜑𝑢 ∗ 𝐼𝑠𝑖𝑛𝜑𝑖 − 𝑉𝑐𝑜𝑠𝜑𝑢 ∗ 𝐼𝑐𝑜𝑠𝜑𝑖 = 𝑉𝐼(𝑐𝑜𝑠𝜑𝑢𝑠𝑖𝑛𝜑𝑖 − 𝑠𝑖𝑛𝜑𝑢𝑐𝑜𝑠𝜑𝑖) (15) 

According to equations (13) and (14), apparent power (S) can be calculated as follows: 

𝑆 = √𝑃2 + 𝑄2 = √(𝑉𝑟𝑚𝑠 ∗ 𝐼𝑟𝑚𝑠(𝑐𝑜𝑠𝜑))
2

+ (𝑉𝑟𝑚𝑠 ∗ 𝐼𝑟𝑚𝑠(𝑠𝑖𝑛𝜑))
2

(16) 

When solved: 
𝑆 = 𝑉𝑟𝑚𝑠 ∗ 𝐼𝑟𝑚𝑠 (17) 

From equations (13) and (17), power factor (cosφ) can be calculated as follows: 

𝑐𝑜𝑠𝜑 =
𝑃

𝑆
(18)
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With equation (18), all parameters for power calculation are complete. 

4. Results and discussion

Performance of the suggested power measuring algorithm, for calculating the active (P), reactive 
(Q) and apparent (S) powers, were tested in Matlab/Simulink. The model of the suggested
algorithm is shown in the following picture.

FIGURE 6 (on the next page).  FLL Power Measuring System. 
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This document contains an analysis of several scenarios, which are presented to showcase 
the capabilities of the FLL system used in this project. Some scenarios may contain multiple 
issues whereas others will focus on a single fault. Referent input values, for all scenarios, are: 

● V = 220 [V]
● I = 5 [A]
● ω = 2*π*50 [rad/sec]
● V – I phase difference scenarios]

A. Scenario 1 Showcase

This scenario intends to show case how the system behaves when the gain of the FLL loop 
(Γ) is changed. Value of Γ had been optimally set to 50 in all upcoming scenarios. The system will 
undergo frequency oscillations, albeit, at different values of gain Γ. Additionally, the system will 
experience phase adjustment. 
Figures 7 and 8 show the power measurement for the system when gain Γ is brought down from 
50 to 10. By decreasing the value of Γ, the system achieved a stable output in a period, which can 
be seen from equation (7). The conclusion from this examination is that the system output 
behaves more oscillatory, as opposed to the optimum value of Γ = 50. 

FIGURE 7. Active power for scenario 1 (Γ = 10). 
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FIGURE 8. Reactive power for scenario 1 (Γ = 10). 

A slower response may not necessarily be a bad thing. Some systems demand lower responses, 
and in such cases, a lower value of gain Γ may be the optimal solution. 

FIGURE 9. Active power for scenario 1 (Γ = 100). 
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FIGURE 10. Reactive power for scenario 1 (Γ = 100). 

Following the same equation (7), a higher value of gain Γ ought to cause a faster system 
response. While this may be true in theory, Figures 9 and 10 show the actual stability. The time it 
takes to stabilise the output is certainly much shorter than in Figure 7. However, the transition 
process experiences a much greater overshoot, as well as the unpredictable oscillations, before the 
signal itself is stabilised. This shows that the gain Γ cannot be infinitely increased. The increase 
depends on the measured system and the need for real-time information. As it was previously 
mentioned, the optimal value of Γ in this paper was calculated at Γ = 50. 

B. Scenario 2 – Referent Measurement

In scenario 2, the regular operation mode is considered. In this case, there are no faults 
on the input, as this measurement serves as a reference to all the following scenarios. 
Figure 11 shows the graph of active power (P). The measured value of P is 1100 W. Considering 
that no changes were present (in comparison to referent values) on inputs, this calculation is a 
simple multiplication of voltage and current. 
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FIGURE 11. Active power for scenario 2. 

FIGURE 12. Reactive power for scenario 2. 

Figure 12 follows the same principle. Since current and voltage are in phase, the value for reactive 
power (Q) is zero. 
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C. Scenario 3 – Phase Adjustment

Scenario 3 examines the case where the phase of one input (in this case, this is the voltage phase) 
is shifted during the operation of the system. At t = 1 s, the voltage phase is changed from 0 to 
π/2. At t = 2 s, this change is reset, to clarify the system behavior. 

FIGURE 13. Active power for scenario 3. 

FIGURE 14. Reactive power for scenario 3. 

Figure 13 shows active power when the voltage phase is adjusted. For the first second, both 
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voltage and current are in phase. During this time interval, active power is equal to the referent 
power in scenario 2, being P = 1100 W. At t = 1 s, the voltage phase switches from 0 to π/2. During 
this time interval, until t = 2 s, active power is zero, due to voltage and current having a phase 
difference of π/2, leading to (cos(π/2) = 0). 
Figure 14 shows reactive power for scenario 3. Up until t = 1 s, reactive power is Q = 0 VAr, due 
to voltage and current being in phase. At t = 1 s, the voltage phase changes to π/2, leading to 
reactive power Q = -1100 VAr. Since the voltage phase is the one changing, the angle is φ = -π/2. 

Q = 220 V * 5 A * sin(-π/2) = -1100 VAr 

At t = 2 s and after, the voltage phase goes back to zero, therefore the reactive power goes back to 
Q = 0 VAr. 

D. Scenario 4 – Frequency Oscillation

Frequency values for voltage and current have been known to oscillate in known systems. Due to 
this fact, the presented FLL system will showcase its behavior when such a change occurs. 

For this scenario, a current phase has been set to π/2. At t = 1 s, both voltage and current go 
through a step frequency change from 50 Hz to 55 Hz.  At t = 2 s, changed values revert to initial 
ones. 

FIGURE 15. Active power for scenario 4. 
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FIGURE 16. Reactive power for scenario 4. 

Figure 15 shows the measured active power as frequency oscillations occur. At t = 1 s, 
frequency values for voltage and current change, and the system clearly shows this through the 
oscillation of the active power, on the graph. This oscillatory behavior can be affected through 
the value of Γ. Value of Γ used in this project is deemed to be optimal, however, that can be further 
debated. Regardless, in a short amount of time, the system recovers, and accurately proceeds to 
perform the measurement, showing correct values of active power. Similar oscillatory behavior 
repeats once the measured system restores the initial value of frequency (50 Hz). This 
measurement is more than satisfactory. 
Figure 16 proves that the same logic applies to reactive power, and that the algorithm is capable 
of solving multiple issues at once. 

5. Conclusion

In conclusion, this paper elaborated on the usefulness of the FLL in power measuring 
systems. While the FLL may be used in different systems, this paper proves the versatility and the 
capability of the FLL to perform power measuring. The FLL was successfully performed through 
various problematic scenarios, such as phase adjustment and frequency oscillation. 

The power measuring design, shown in the project, greatly reduces the demand for DSP 
systems, which need to perform integrals and derivatives to calculate powers. Instead, by utilizing 
the output of the SOGI, simple trigonometry is enough to perform accurate and fast power 
calculations. 

Additionally, the currently present power measuring FLL system can be further 
improved. It is a menial task to add apparent power and power factor calculations. Another issue 
that the FLL can resolve is the issue of the DC component which causes major issues in ordinary 
power measuring systems. However, this topic will be further expanded on in future works. The 
presented system performed marvelously, completely fulfilling expected results. 
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