Effect of Boronizing and Shot Peening in Ferrous Based FeCu-Graphite P/M Material on Fatigue Properties

Selim Sarper YILMAZ
Celal Bayar University, Vocational High School,
Department of Machinery
Turgutlu, Manisa, TURKEY
bekir.unlu@bayar.edu.tr

Bekir Sadık ÜNLÜ
Celal Bayar University, Vocational High School
Department of Machinery
Turgutlu, Manisa, TURKEY

Naci Kurgan
Karabük University, Engineering Faculty,
Department of Mechanical Engineering,
Karabük, TURKEY
kurgannaci@yahoo.com

Remzi VAROL
Süleyman Demirel University Engineering Faculty
Department of Mechanical Engineering
Isparta, TURKEY
rvarol@mmf.sdu.edu.tr

Abstract: Ferrous based materials manufactured by powder metallurgy (P/M) method are widely used in industry. These materials are very important in applications where no machining is required, can also be used as journal bearing material due to their self-lubricated property, and find applications in the medical industry. In this study, powder metal parts were manufactured from composites ferrous based FeCu-Graphite by P/M method. Fatigue test samples were carried out on manufactured samples receiving no treatment or boronizing treatment or boronizing+shot treatment. Fatigue properties of these parts were investigated by rotating bending fatigue test rig.

Keywords: Powder metallurgy, Boronizing, Shot peening, Fatigue.

Introduction

Powder metallurgy is one of the methods used for used or semi-processed parts [1]. Because of higher melting temperatures of some metals, super alloy and hard metals must have been produced by powder metallurgy method [2, 3].

Mechanical properties of P/M parts depend on pore amount, distribution, type, size and form. As pore amount decreases, fatigue strength and the other mechanical properties improve [4]. Strength of machine parts is not as strong as that of conventional steels produced by powder metallurgy method [5]. In order to produce high density parts, high capacity presses or hot isostatic pressing method can be used. Thus, mechanical properties of P/M parts match mechanical properties of forging parts [1, 6]. Furthermore, powder metal materials exhibit different microstructure and density at various sintering conditions [7]. In addition to that, physical properties are affected from pore ratio. Porosity increase sound and vibration absorption property. Therefore, a significant portion of powder metallurgy products is designed to take
advantage of porosity into consideration [8]. Pore size and distribution are the most important parameters affecting mechanical properties [9, 10].

Boronizing is a thermo chemical surface hardening treatment that enriches the material surface in boron atoms via the diffusion of elemental boron into the surface of material in contact at high temperatures. Boronizing treatment is performed at temperatures of 950 °C for varying times between 1 and 10 hours. The characteristics of this boride layer depending on boronizing temperature, process time and properties of the boronized material. The boronizing elements placed into the heat resistant container and specimens are inserted into this powder [11]. The particle size of the powder is an important factor in the formation of the boride layer [12]. The advantages of boronizing treatment over the other types of surface hardening methods are that the surface layer is very hard, and no extra heat treatment is required after boronizing. The most important aim in boronizing is to achieve the desired hardness [13-15]. Fatigue resistance increases by boronizing. Therefore, boronizing can be applied to ferrous based P/M materials [1, 16].

Shot peening is an applied process where the surface of a machine part are treated with a lot of small spherical shot jet under controlled conditions. A compressive stressed layer occurs as a result of the non-homogeneous plastic deformation on metal material by shot peening. The aim of the shot peening is to improve fatigue, corrosion fatigue, and stressed corrosion of metal materials [17-20]. Improving fatigue properties of materials are important because machine elements are generally exposed to dynamic loads. One of the methods used to improve fatigue properties of materials is shot peening. Shot peening process can be applied to any metal based machine part. However, surface hardness and quality increases with shot peening in P/M materials due to a decrease in the number of pores [21-23].

In this study, powder metal parts were manufactured from composites ferrous based FeCu-Graphite by P/M method. Boronizing and boronizing+shot peening was applied to samples. Fatigue properties of these parts were investigated. In addition; microstructural properties of fracture surfaces were investigated.

Experimental Studies

In this study, FeCu-Graphite composites 55x10x10 mm dimension were manufactured at 400 MPa pressure, 1120 °C sintering by P/M method. Non-boronized FeCu-Graphite (Group 1), boronized FeCu-Graphite (Group 2), boronized and shot peened FeCu-Graphite (Group 3) P/M materials were used. The chemical compositions of the materials used in the experiments are given in Table 1. Some basic properties of ASC 100.29 iron powder are shown in Table 2. Mechanical properties of ASC 100.29 iron powder are shown in Table 3. Chemical compositions of samples are shown in Table 4.

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 1020</td>
<td>0.2</td>
<td>0.25</td>
<td>0.7</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Chemical composition of SAE 1020 steel disc (wt.%).

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Dimension (µm)</th>
<th>Visible Density (g/cm³)</th>
<th>Flow (s/50 g)</th>
<th>H₂ Loss (%)</th>
<th>C (%)</th>
<th>Pressing (g/cm³) (600 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC 100.29</td>
<td>20 - 180</td>
<td>2.96</td>
<td>24</td>
<td>0.8</td>
<td>0.002</td>
<td>7.21</td>
</tr>
</tbody>
</table>

Table 2. Some base properties of ASC 100.29 iron powder.
Table 3. Mechanical properties of ASC 100.29 iron powder.

<table>
<thead>
<tr>
<th>Tensile Strength (MPa)</th>
<th>Yield Strength (MPa)</th>
<th>A5 %</th>
<th>Density (ρ) (g/cm³)</th>
<th>Hardness (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>218</td>
<td>3.7</td>
<td>6.61</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 4. Chemical composition of samples (wt %).

<table>
<thead>
<tr>
<th>Powder</th>
<th>Graphite</th>
<th>Cu</th>
<th>Fe</th>
<th>Lubricant (Zn-Stearat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity (wt %)</td>
<td>0.2</td>
<td>3</td>
<td>Based</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The box boronizing method has been used for the boronizing process. The box was held in electric resistance oven for 4 h at 950 °C. At the end of the boronizing process, the box was cooled to room temperature and then the specimens were cleaned.

The microstructures were photographed using scanning electron microscope. Fatigue fracture surfaces were examined scanning electron microscope (Jeol JSM-6060). Dimensions of fatigue specimens are shown in Fig.1. Fatigue tests were applied to R=+/−1 under condition by using rotating bending fatigue test rig.

Fig.1. Fatigue sample.

Results and Discussion

Fatigue Properties

Results of fatigue properties were shown in Fig.2. Generally, fatigue properties of boronized specimens and boronized+shot peened specimens were higher than those of non-boronized specimens because of very hard boride layer.
Tunay et al. [6], Varol and Sartaş [10], Sartaş et al. [13], Selver et al. [20], Orman [21], and Başaran [22] have examined fatigue properties of boronized or shot peened ferrous based P/M materials. They reported that boronizing and shot peening significantly improved fatigue properties in these materials.

Harada et al. [25] investigated effects of microshot peening on surface characteristics of high-speed tool steel. They reported increase of hardness by applying shot peening at high temperatures. Chawla and Dang [26] investigated fatigue properties of porous sintered steels. They reported that fatigue strength increased with a decrease in porosity. Pariente and Guagliano [27] investigated fatigue properties of carburized and shot peened gear steels. Mahagaonkar et al. [28] investigated fatigue properties of SAE 1045 and SAE 316L steels. Zhang and Liu [29] investigated fatigue properties of Ti alloys. Bouraoui et al. [30] investigated fatigue properties metal parts. They reported that fatigue properties were improved with high residual stress by applying shot peening.

Microstructural Properties

When microstructures of fatigue fracture surfaces of samples were examined by scanning electron microscope (SEM) (Figs. 3-6). Brittle fracture was observed in these PM samples due to porous structure. Thick, porous, and bright structure show brittle fracture of PM materials.
Fig. 3. SEM microstructure of fatigue fracture surface of FeCu-Graphite composite (Group 1).

Fig. 4. SEM microstructure of fatigue fracture surface of FeCu-Graphite composite (Group 1).

Fig. 5. SEM microstructure of fatigue fracture surface of B-FeCu-Graphite composite (Group 2).
Tunay et al. [6], Varol and Sarıtaş [10], Sarıtaş et al. [13], Selver et al. [20], Orman [21], and Başaran [22] have examined microstructure properties of boronized or shot peened ferrous based P/M materials. They reported that boronizing and shot peening significantly improved microstructural properties in these materials because of reduction in porosity.

Tsuji et al. [24] investigated microstructural properties of plasma-carburized and shot-peened Ti–6Al–4V alloys. They observed a lot of uneven dimples on the surface of shot-peened carburized specimens. They reported that the dimple size and depth of the surface was very small due to a fine particle shot. Micro-cracks were not observed in the near surface. The carbon diffusion layer was occurred as a thin whiter and brighter layer in the near surface region of shotpeened carburized specimen.

Harada et al. [25] investigated microstructural properties of microshot peening on surface characteristics of high-speed tool steel. They observed that the distribution of white rings on the surface of the peened workpieces. Chawla and Dang [26] investigated microstructural properties of porous sintered steels. They observed plastic deformation and crack growth due to changes in porosity.

Conclusions

Based on the findings our study, the following conclusions can be drawn:

1. Fatigue properties of boronized specimens and boronized+shot peened specimens were higher than those of non-boronized specimens.
2. Brittle fracture was shown in PM materials.

References

Demir A., Sarıtaş S., “Mechanical properties of powder metal steels”, Akdeniz University,

ferrous based PM parts”, PhD thesis, Celal Bayar University, Manisa, Turkey (In Turkish), 2004.

PhD thesis, Anadolu University, Eskişehir, Turkey (in Turkish), 1996.

Ünlü, B. S., “Determination of usability of boronized ferrous based materials as bearing and

Varol R., Sarıtaş S., “Effect of shot peening treatment on fatigue properties of ferrous based

Yılmaz, S. S. “Effect on physical and mechanical properties of surface hardening treatments of